文件
gprMax/gprMax/optimisation_taguchi.py
2016-01-25 10:39:16 +00:00

300 行
11 KiB
Python

# Copyright (C) 2015-2016: The University of Edinburgh
# Authors: Craig Warren and Antonis Giannopoulos
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import os
from collections import OrderedDict
import numpy as np
from gprMax.constants import floattype
from gprMax.exceptions import CmdInputError
def taguchi_code_blocks(inputfile, taguchinamespace):
"""Looks for and processes a Taguchi code block (containing Python code) in the input file. It will ignore any lines that are comments, i.e. begin with a double hash (##), and any blank lines.
Args:
inputfile (str): Name of the input file to open.
taguchinamespace (dict): Namespace that can be accessed by user a Taguchi code block in input file.
Returns:
processedlines (list): Input commands after Python processing.
"""
with open(inputfile, 'r') as f:
# Strip out any newline characters and comments that must begin with double hashes
inputlines = [line.rstrip() for line in f if(not line.startswith('##') and line.rstrip('\n'))]
x = 0
while(x < len(inputlines)):
if(inputlines[x].startswith('#taguchi:')):
# String to hold Python code to be executed
taguchicode = ''
x += 1
while not inputlines[x].startswith('#end_taguchi:'):
# Add all code in current code block to string
taguchicode += inputlines[x] + '\n'
x += 1
if x == len(inputlines):
raise CmdInputError('Cannot find the end of the Taguchi code block, i.e. missing #end_taguchi: command.')
# Compile code for faster execution
taguchicompiledcode = compile(taguchicode, '<string>', 'exec')
# Execute code block & make available only usernamespace
exec(taguchicompiledcode, taguchinamespace)
x += 1
return taguchinamespace
def construct_OA(optparams):
"""Load an orthogonal array (OA) from a numpy file. Configure and return OA and properties of OA.
Args:
optparams (dict): Dictionary containing name of parameters to optimise and their initial ranges
Returns:
OA (array): Orthogonal array
N (int): Number of experiments in OA
cols (int): Number of columns in OA
k (int): Number of columns in OA cut down to number of parameters to optimise
s (int): Number of levels in OA
t (int): Strength of OA
"""
# Properties of the orthogonal array (OA)
# Strength
t = 2
# Number of levels
s = 3
# Number of parameters to optimise
k = len(optparams)
# Load the appropriate OA
if k <= 4:
OA = np.load(os.path.join('user_libs', 'OA_9_4_3_2.npy'))
# Number of experiments
N = OA.shape[0]
# Number of columns of OA before cut down
cols = OA.shape[1]
# Cut down OA columns to number of parameters to optimise
OA = OA[:, 0:k]
elif k <= 7:
OA = np.load(os.path.join('user_libs', 'OA_18_7_3_2.npy'))
# Number of experiments
N = OA.shape[0]
# Number of columns of OA before cut down
cols = OA.shape[1]
# Cut down OA columns to number of parameters to optimise
OA = OA[:, 0:k]
else:
p = int(np.ceil(np.log(k * (s - 1) + 1) / np.log(s)))
# Number of experiments
N = s**p
# Number of columns
cols = int((N - 1) / (s - 1))
# Algorithm to construct OA from: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6812898
OA = np.zeros((N + 1, cols + 1), dtype=np.int8)
# Construct basic columns
for ii in range(1, p + 1):
col = int((s**(ii - 1) - 1) / (s - 1) + 1)
for row in range(1, N + 1):
OA[row, col] = np.mod(np.floor((row - 1) / (s**(p - ii))), s)
# Construct non-basic columns
for ii in range(2, p + 1):
col = int((s**(ii - 1) - 1) / (s - 1) + 1)
for jj in range(1, col):
for kk in range(1, s):
OA[:, col + (jj - 1) * (s - 1) + kk] = np.mod(OA[:, jj] * kk + OA[:, col], s)
# First row and first columns are unneccessary, only there to match algorithm, and cut down columns to number of parameters to optimise
OA = OA[1:, 1:k + 1]
return OA, N, cols, k, s, t
def calculate_ranges_experiments(optparams, optparamsinit, levels, levelsopt, levelsdiff, OA, N, k, s, i):
"""Calculate values for parameters to optimise for a set of experiments.
Args:
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
optparamsinit (list): Initial ranges for parameters to optimise
levels (array): Lower, central, and upper values for each parameter
levelsopt (array): Optimal level for each parameter from previous iteration
levelsdiff (array): Difference used to set values in levels array
OA (array): Orthogonal array
N (int): Number of experiments in OA
k (int): Number of parameters to optimise in OA
s (int): Number of levels in OA
i (int): Iteration number
Returns:
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
levels (array): Lower, central, and upper values for each parameter
levelsdiff (array): Difference used to set values in levels array
"""
# Gaussian reduction function used for calculating levels
T = 18 # Usually values between 15 - 20
RR = np.exp(-(i/T)**2)
# Calculate levels for each parameter
for p in range(0, k):
# Central levels - for first iteration set to midpoint of initial range and don't use RR
if i == 0:
levels[1, p] = ((optparamsinit[p][1][1] - optparamsinit[p][1][0]) / 2) + optparamsinit[p][1][0]
levelsdiff[p] = (optparamsinit[p][1][1] - optparamsinit[p][1][0]) / (s + 1)
# Central levels - set to optimum from previous iteration
else:
levels[1, p] = levels[levelsopt[p], p]
levelsdiff[p] = RR * levelsdiff[p]
# Lower levels set using central level and level differences values; and check they are not outwith initial ranges
if levels[1, p] - levelsdiff[p] < optparamsinit[p][1][0]:
levels[0, p] = optparamsinit[p][1][0]
else:
levels[0, p] = levels[1, p] - levelsdiff[p]
# Upper levels set using central level and level differences values; and check they are not outwith initial ranges
if levels[1, p] + levelsdiff[p] > optparamsinit[p][1][1]:
levels[2, p] = optparamsinit[p][1][1]
else:
levels[2, p] = levels[1, p] + levelsdiff[p]
# Update dictionary of parameters to optimise with lists of new values; clear dictionary first
optparams = OrderedDict((key, list()) for key in optparams)
p = 0
for key, value in optparams.items():
for exp in range(0, N):
if OA[exp, p] == 0:
optparams[key].append(levels[0, p])
elif OA[exp, p] == 1:
optparams[key].append(levels[1, p])
elif OA[exp, p] == 2:
optparams[key].append(levels[2, p])
p += 1
return optparams, levels, levelsdiff
def calculate_optimal_levels(optparams, levels, levelsopt, fitnessvalues, OA, N, k):
"""Calculate optimal levels from results of fitness metric by building a response table.
Args:
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
levels (array): Lower, central, and upper values for each parameter
levelsopt (array): Optimal level for each parameter from previous iteration
fitnessvalues (list): Values from results of fitness metric
OA (array): Orthogonal array
N (int): Number of experiments in OA
k (int): Number of parameters to optimise in OA
Returns:
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
levelsopt (array): Optimal level for each parameter from previous iteration
"""
# Build a table of responses based on the results of the fitness metric
for p in range(0, k):
responses = np.zeros(3, dtype=floattype)
cnt1 = 0
cnt2 = 0
cnt3 = 0
for exp in range(1, N):
if OA[exp, p] == 0:
responses[0] += fitnessvalues[exp]
cnt1 += 1
elif OA[exp, p] == 1:
responses[1] += fitnessvalues[exp]
cnt2 += 1
elif OA[exp, p] == 2:
responses[2] += fitnessvalues[exp]
cnt3 += 1
responses[0] /= cnt1
responses[1] /= cnt2
responses[2] /= cnt3
# Calculate optimal level from table of responses
tmp = np.where(responses == np.amax(responses))[0]
# If there is more than one level found use the first
if len(tmp) > 1:
tmp = tmp[0]
levelsopt[p] = tmp
# Update dictionary of parameters to optimise with lists of new values; clear dictionary first
optparams = OrderedDict((key, list()) for key in optparams)
p = 0
for key, value in optparams.items():
optparams[key].append(levels[levelsopt[p], p])
p += 1
return optparams, levelsopt
def plot_optimisation_history(fitnessvalueshist, optparamshist, optparamsinit):
"""Plot the history of fitness values and each optimised parameter values for the optimisation.
Args:
fitnessvalueshist (list): History of fitness values
optparamshist (dict): Name of parameters to optimise and history of their values
"""
import matplotlib.pyplot as plt
# Plot history of fitness values
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Fitness value'), num='History of fitness values', figsize=(20, 10), facecolor='w', edgecolor='w')
iterations = np.arange(1, len(fitnessvalueshist) + 1)
ax.plot(iterations, fitnessvalueshist, 'r', marker='.', ms=15, lw=1)
ax.set_xlim(1, len(fitnessvalueshist))
ax.grid()
# Plot history of optimisation parameters
p = 0
for key, value in optparamshist.items():
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Parameter value'), num='History of ' + key + ' parameter', figsize=(20, 10), facecolor='w', edgecolor='w')
ax.plot(iterations, optparamshist[key], 'r', marker='.', ms=15, lw=1)
ax.set_xlim(1, len(fitnessvalueshist))
ax.set_ylim(optparamsinit[p][1][0], optparamsinit[p][1][1])
ax.grid()
p += 1
plt.show()