文件
gprMax/gprMax/gprMax.py
2017-03-02 15:57:39 +00:00

320 行
15 KiB
Python
原始文件 Blame 文件历史

此文件含有不可见的 Unicode 字符

此文件含有人类无法区分的不可见的 Unicode 字符,但可以由计算机进行不同的处理。 如果您是想特意这样的,可以安全地忽略该警告。 使用 Escape 按钮显示他们。

# Copyright (C) 2015-2017: The University of Edinburgh
# Authors: Craig Warren and Antonis Giannopoulos
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
"""gprMax.gprMax: provides entry point main()."""
import argparse
import datetime
from enum import Enum
import os
from time import perf_counter
import numpy as np
from gprMax._version import __version__
from gprMax.constants import c, e0, m0, z0
from gprMax.exceptions import GeneralError
from gprMax.model_build_run import run_model
from gprMax.utilities import get_host_info, get_terminal_width, human_size, logo, open_path_file
def main():
"""This is the main function for gprMax."""
# Print gprMax logo, version, and licencing/copyright information
logo(__version__ + ' (Bowmore)')
# Parse command line arguments
parser = argparse.ArgumentParser(prog='gprMax', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('inputfile', help='path to, and name of inputfile or file object')
parser.add_argument('-n', default=1, type=int, help='number of times to run the input file, e.g. to create a B-scan')
parser.add_argument('-mpi', action='store_true', default=False, help='flag to switch on MPI task farm')
parser.add_argument('-task', type=int, help='task identifier for job array on Open Grid Scheduler/Grid Engine (http://gridscheduler.sourceforge.net/index.html)')
parser.add_argument('-benchmark', action='store_true', default=False, help='flag to switch on benchmarking mode')
parser.add_argument('--geometry-only', action='store_true', default=False, help='flag to only build model and produce geometry file(s)')
parser.add_argument('--geometry-fixed', action='store_true', default=False, help='flag to not reprocess model geometry, e.g. for B-scans where the geometry is fixed')
parser.add_argument('--write-processed', action='store_true', default=False, help='flag to write an input file after any Python code and include commands in the original input file have been processed')
parser.add_argument('--opt-taguchi', action='store_true', default=False, help='flag to optimise parameters using the Taguchi optimisation method')
args = parser.parse_args()
run_main(args)
def api(inputfile, n=1, mpi=False, task=False, benchmark=False, geometry_only=False, geometry_fixed=False, write_processed=False, opt_taguchi=False):
"""If installed as a module this is the entry point."""
# Print gprMax logo, version, and licencing/copyright information
logo(__version__ + ' (Bowmore)')
class ImportArguments:
pass
args = ImportArguments()
args.inputfile = inputfile
args.n = n
args.mpi = mpi
args.task = task
args.benchmark = benchmark
args.geometry_only = geometry_only
args.geometry_fixed = geometry_fixed
args.write_processed = write_processed
args.opt_taguchi = opt_taguchi
run_main(args)
def run_main(args):
"""Top-level function that controls what mode of simulation (standard/optimsation/benchmark etc...) is run.
Args:
args (dict): Namespace with input arguments from command line or api.
"""
numbermodelruns = args.n
with open_path_file(args.inputfile) as inputfile:
# Get information about host machine
hostinfo = get_host_info()
hyperthreading = ', {} cores with Hyper-Threading'.format(hostinfo['logicalcores']) if hostinfo['hyperthreading'] else ''
print('\nHost: {}; {} x {} ({} cores{}); {} RAM; {}'.format(hostinfo['machineID'], hostinfo['sockets'], hostinfo['cpuID'], hostinfo['physicalcores'], hyperthreading, human_size(hostinfo['ram'], a_kilobyte_is_1024_bytes=True), hostinfo['osversion']))
# Create a separate namespace that users can access in any Python code blocks in the input file
usernamespace = {'c': c, 'e0': e0, 'm0': m0, 'z0': z0, 'number_model_runs': numbermodelruns, 'input_directory': os.path.dirname(os.path.abspath(inputfile.name))}
#######################################
# Process for benchmarking simulation #
#######################################
if args.benchmark:
run_benchmark_sim(args, inputfile, usernamespace)
####################################################
# Process for simulation with Taguchi optimisation #
####################################################
elif args.opt_taguchi:
if args.benchmark:
raise GeneralError('Taguchi optimisation should not be used with benchmarking mode')
from gprMax.optimisation_taguchi import run_opt_sim
run_opt_sim(args, numbermodelruns, inputfile, usernamespace)
################################################
# Process for standard simulation (CPU or GPU) #
################################################
else:
# Mixed mode MPI with OpenMP or CUDA - MPI task farm for models with each model parallelised with OpenMP (CPU) or CUDA (GPU)
if args.mpi:
if args.benchmark:
raise GeneralError('MPI should not be used with benchmarking mode')
if numbermodelruns == 1:
raise GeneralError('MPI is not beneficial when there is only one model to run')
run_mpi_sim(args, numbermodelruns, inputfile, usernamespace)
# Standard behaviour - part of a job array on Open Grid Scheduler/Grid Engine with each model parallelised with OpenMP (CPU) or CUDA (GPU)
elif args.task:
if args.benchmark:
raise GeneralError('A job array should not be used with benchmarking mode')
run_job_array_sim(args, numbermodelruns, inputfile, usernamespace)
# Standard behaviour - models run serially with each model parallelised with OpenMP (CPU) or CUDA (GPU)
else:
run_std_sim(args, numbermodelruns, inputfile, usernamespace)
def run_std_sim(args, numbermodelruns, inputfile, usernamespace, optparams=None):
"""Run standard simulation - models are run one after another and each model is parallelised with OpenMP
Args:
args (dict): Namespace with command line arguments
numbermodelruns (int): Total number of model runs.
inputfile (object): File object for the input file.
usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.
optparams (dict): Optional argument. For Taguchi optimisation it provides the parameters to optimise and their values.
"""
tsimstart = perf_counter()
for currentmodelrun in range(1, numbermodelruns + 1):
if optparams: # If Taguchi optimistaion, add specific value for each parameter to optimise for each experiment to user accessible namespace
tmp = {}
tmp.update((key, value[currentmodelrun - 1]) for key, value in optparams.items())
modelusernamespace = usernamespace.copy()
modelusernamespace.update({'optparams': tmp})
else:
modelusernamespace = usernamespace
run_model(args, currentmodelrun, numbermodelruns, inputfile, modelusernamespace)
tsimend = perf_counter()
simcompletestr = '\n=== Simulation completed in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=tsimend - tsimstart))
print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))
def run_job_array_sim(args, numbermodelruns, inputfile, usernamespace, optparams=None):
"""Run standard simulation as part of a job array on Open Grid Scheduler/Grid Engine (http://gridscheduler.sourceforge.net/index.html) - each model is parallelised with OpenMP
Args:
args (dict): Namespace with command line arguments
numbermodelruns (int): Total number of model runs.
inputfile (object): File object for the input file.
usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.
optparams (dict): Optional argument. For Taguchi optimisation it provides the parameters to optimise and their values.
"""
currentmodelrun = args.task
tsimstart = perf_counter()
if optparams: # If Taguchi optimistaion, add specific value for each parameter to optimise for each experiment to user accessible namespace
tmp = {}
tmp.update((key, value[currentmodelrun - 1]) for key, value in optparams.items())
modelusernamespace = usernamespace.copy()
modelusernamespace.update({'optparams': tmp})
else:
modelusernamespace = usernamespace
run_model(args, currentmodelrun, numbermodelruns, inputfile, modelusernamespace)
tsimend = perf_counter()
simcompletestr = '\n=== Simulation completed in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=tsimend - tsimstart))
print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))
def run_benchmark_sim(args, inputfile, usernamespace):
"""Run standard simulation in benchmarking mode - models are run one after another and each model is parallelised with OpenMP
Args:
args (dict): Namespace with command line arguments
inputfile (object): File object for the input file.
usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.
"""
# Get information about host machine
hostinfo = get_host_info()
machineIDlong = '; '.join([hostinfo['machineID'], hostinfo['cpuID'], hostinfo['osversion']])
# Number of threads to test - start from max physical CPU cores and divide in half until 1
minthreads = 1
maxthreads = hostinfo['physicalcores']
threads = []
while minthreads < maxthreads:
threads.append(int(minthreads))
minthreads *= 2
threads.append(int(maxthreads))
threads.reverse()
benchtimes = np.zeros(len(threads))
numbermodelruns = len(threads)
usernamespace['number_model_runs'] = numbermodelruns
for currentmodelrun in range(1, numbermodelruns + 1):
os.environ['OMP_NUM_THREADS'] = str(threads[currentmodelrun - 1])
tsolve = run_model(args, currentmodelrun, numbermodelruns, inputfile, usernamespace)
benchtimes[currentmodelrun - 1] = tsolve
# Save number of threads and benchmarking times to NumPy archive
threads = np.array(threads)
np.savez(os.path.splitext(inputfile.name)[0], threads=threads, benchtimes=benchtimes, machineID=machineIDlong, version=__version__)
simcompletestr = '\n=== Simulation completed'
print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))
def run_mpi_sim(args, numbermodelruns, inputfile, usernamespace, optparams=None):
"""Run mixed mode MPI/OpenMP simulation - MPI task farm for models with each model parallelised with OpenMP
Args:
args (dict): Namespace with command line arguments
numbermodelruns (int): Total number of model runs.
inputfile (object): File object for the input file.
usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.
optparams (dict): Optional argument. For Taguchi optimisation it provides the parameters to optimise and their values.
"""
from mpi4py import MPI
# Define MPI message tags
tags = Enum('tags', {'READY': 0, 'DONE': 1, 'EXIT': 2, 'START': 3})
# Initializations and preliminaries
comm = MPI.COMM_WORLD # get MPI communicator object
size = comm.Get_size() # total number of processes
rank = comm.Get_rank() # rank of this process
status = MPI.Status() # get MPI status object
name = MPI.Get_processor_name() # get name of processor/host
tsimstart = perf_counter()
# Master process
if rank == 0:
currentmodelrun = 1
numworkers = size - 1
closedworkers = 0
print('MPI master rank {} (PID {}) on {} using {} workers'.format(rank, os.getpid(), name, numworkers))
while closedworkers < numworkers:
data = comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=status)
source = status.Get_source()
tag = status.Get_tag()
# Worker is ready, so send it a task
if tag == tags.READY.value:
if currentmodelrun < numbermodelruns + 1:
comm.send(currentmodelrun, dest=source, tag=tags.START.value)
currentmodelrun += 1
else:
comm.send(None, dest=source, tag=tags.EXIT.value)
# Worker has completed a task
elif tag == tags.DONE.value:
pass
# Worker has completed all tasks
elif tag == tags.EXIT.value:
print('MPI worker rank {} completed all tasks'.format(source))
closedworkers += 1
# Worker process
else:
while True: # Break out of loop when work receives exit message
comm.send(None, dest=0, tag=tags.READY.value)
currentmodelrun = comm.recv(source=0, tag=MPI.ANY_TAG, status=status) #  Receive a model number to run from the master
tag = status.Get_tag()
# Run a model
if tag == tags.START.value:
# Get info and setup device ID for GPU(s)
gpuinfo = ''
print('MPI worker rank {} (PID {}) starting model {}/{}{} on {}'.format(rank, os.getpid(), currentmodelrun, numbermodelruns, gpuinfo, name))
# If Taguchi optimistaion, add specific value for each parameter to optimise for each experiment to user accessible namespace
if optparams:
tmp = {}
tmp.update((key, value[currentmodelrun - 1]) for key, value in optparams.items())
modelusernamespace = usernamespace.copy()
modelusernamespace.update({'optparams': tmp})
else:
modelusernamespace = usernamespace
# Run the model
run_model(args, currentmodelrun, numbermodelruns, inputfile, modelusernamespace)
comm.send(None, dest=0, tag=tags.DONE.value)
elif tag == tags.EXIT.value:
break
comm.send(None, dest=0, tag=tags.EXIT.value)
tsimend = perf_counter()
simcompletestr = '\n=== Simulation completed in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=tsimend - tsimstart))
print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))