你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-08 07:24:19 +08:00
879 行
39 KiB
Python
879 行
39 KiB
Python
# Author: Iraklis Giannakis
|
|
# E-mail: i.giannakis@ed.ac.uk
|
|
#
|
|
# Copyright (c) 2017 Iraklis Giannakis
|
|
# All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms are permitted
|
|
# provided that the above copyright notice and this paragraph are
|
|
# duplicated in all such forms and that any documentation,
|
|
# advertising materials, and other materials related to such
|
|
# distribution and use acknowledge that the software was developed
|
|
# as part of gprMax. The name of gprMax may not be used to
|
|
# endorse or promote products derived from this software without
|
|
# specific prior written permission.
|
|
# THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
|
|
# IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
|
|
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
import numpy as np
|
|
import os
|
|
from matplotlib import pylab as plt
|
|
import sys
|
|
import scipy.interpolate
|
|
from tqdm import tqdm
|
|
|
|
|
|
class Optimizer(object):
|
|
|
|
def fit(self):
|
|
"""
|
|
Call the optimization function that tries to find an optimal set
|
|
of relaxation times that minimise the error
|
|
between the actual and the approximated electric permittivity.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
@staticmethod
|
|
def plot(x, y):
|
|
"""
|
|
Dynamically plot the error as the optimisation takes place.
|
|
|
|
Args:
|
|
x (array): The number of current iterations.
|
|
y (array): The objective value at for all x points.
|
|
"""
|
|
plt.rcParams["axes.facecolor"] = "black"
|
|
plt.plot(x, y, "b-", linewidth=3.0)
|
|
plt.ylim(min(y) - 0.1 * min(y),
|
|
max(y) + 0.1 * max(y))
|
|
plt.xlim(min(x), max(x))
|
|
plt.grid(b=True, which="major", color="w",
|
|
linewidth=0.2, linestyle="--")
|
|
plt.suptitle("Debye fitting process")
|
|
plt.xlabel("Iteration")
|
|
plt.ylabel("Average Error")
|
|
plt.pause(0.0001)
|
|
|
|
|
|
class Particle_swarm(Optimizer):
|
|
def __init__(self, swarmsize=40, maxiter=50,
|
|
omega=0.9, phip=0.9, phig=0.9,
|
|
minstep=1e-8, pflag=False):
|
|
"""
|
|
Create particle swarm optimisation object with predefined parameters.
|
|
|
|
Args:
|
|
swarmsize (int): The number of particles in the swarm (Default: 40).
|
|
maxiter (int): The maximum number of iterations for the swarm
|
|
to search (Default: 50).
|
|
omega (float): Particle velocity scaling factor (Default: 0.9).
|
|
phip (float): Scaling factor to search away from the particle's
|
|
best known position (Default: 0.9).
|
|
phig (float): Scaling factor to search away from the swarm's
|
|
best known position (Default: 0.9).
|
|
minstep (float): The minimum stepsize of swarm's best position
|
|
before the search terminates (Default: 1e-8).
|
|
pflag (bool): if True will plot the actual and the approximated
|
|
value during optimization process (Default: False).
|
|
"""
|
|
self.swarmsize = swarmsize
|
|
self.maxiter = maxiter
|
|
self.omega = omega
|
|
self.phip = phip
|
|
self.phig = phig
|
|
self.minstep = minstep
|
|
self.pflag = pflag
|
|
|
|
def fit(self, func, lb, ub, funckwargs={}):
|
|
"""
|
|
A particle swarm optimisation that tries to find an optimal set
|
|
of relaxation times that minimise the error
|
|
between the actual and the approximated electric permittivity.
|
|
The current class is a modified edition of the pyswarm package
|
|
which can be found at https://pythonhosted.org/pyswarm/
|
|
|
|
Args:
|
|
func (function): The function to be minimized
|
|
lb (array): The lower bounds of the design variable(s)
|
|
ub (array): The upper bounds of the design variable(s)
|
|
funckwargs (dict): Additional keyword arguments passed to
|
|
objective and constraint function
|
|
(Default: empty dict)
|
|
|
|
Returns:
|
|
g (array): The swarm's best known position (optimal design).
|
|
fg (float): The objective value at ``g``.
|
|
"""
|
|
# check input parameters
|
|
assert len(lb) == len(ub), 'Lower- and upper-bounds must be the same length'
|
|
assert hasattr(func, '__call__'), 'Invalid function handle'
|
|
lb = np.array(lb)
|
|
ub = np.array(ub)
|
|
assert np.all(ub > lb), 'All upper-bound values must be greater than lower-bound values'
|
|
|
|
vhigh = np.abs(ub - lb)
|
|
vlow = -vhigh
|
|
|
|
# Initialize objective function
|
|
obj = lambda x: func(x=x, **funckwargs)
|
|
|
|
# Initialize the particle swarm
|
|
d = len(lb) # the number of dimensions each particle has
|
|
x = np.random.rand(self.swarmsize, d) # particle positions
|
|
v = np.zeros_like(x) # particle velocities
|
|
p = np.zeros_like(x) # best particle positions
|
|
fp = np.zeros(self.swarmsize) # best particle function values
|
|
g = [] # best swarm position
|
|
fg = np.inf # artificial best swarm position starting value
|
|
|
|
for i in range(self.swarmsize):
|
|
# Initialize the particle's position
|
|
x[i, :] = lb + x[i, :] * (ub - lb)
|
|
# Initialize the particle's best known position
|
|
p[i, :] = x[i, :]
|
|
# Calculate the objective's value at the current particle's
|
|
fp[i] = obj(p[i, :])
|
|
# At the start, there may not be any feasible starting point,
|
|
# so just
|
|
# give it a temporary "best" point since it's likely to change
|
|
if i == 0:
|
|
g = p[0, :].copy()
|
|
# If the current particle's position is better than the swarm's,
|
|
# update the best swarm position
|
|
if fp[i] < fg:
|
|
fg = fp[i]
|
|
g = p[i, :].copy()
|
|
# Initialize the particle's velocity
|
|
v[i, :] = vlow + np.random.rand(d) * (vhigh - vlow)
|
|
|
|
# Iterate until termination criterion met
|
|
for it in tqdm(range(self.maxiter), desc='Debye fitting'):
|
|
rp = np.random.uniform(size=(self.swarmsize, d))
|
|
rg = np.random.uniform(size=(self.swarmsize, d))
|
|
for i in range(self.swarmsize):
|
|
# Update the particle's velocity
|
|
v[i, :] = self.omega * v[i, :] + self.phip * rp[i, :] * \
|
|
(p[i, :] - x[i, :]) + \
|
|
self.phig * rg[i, :] * (g - x[i, :])
|
|
# Update the particle's position,
|
|
# correcting lower and upper bound
|
|
# violations, then update the objective function value
|
|
x[i, :] = x[i, :] + v[i, :]
|
|
mark1 = x[i, :] < lb
|
|
mark2 = x[i, :] > ub
|
|
x[i, mark1] = lb[mark1]
|
|
x[i, mark2] = ub[mark2]
|
|
fx = obj(x[i, :])
|
|
# Compare particle's best position
|
|
# (if constraints are satisfied)
|
|
if fx < fp[i]:
|
|
p[i, :] = x[i, :].copy()
|
|
fp[i] = fx
|
|
# Compare swarm's best position to current
|
|
# particle's position
|
|
# (Can only get here if constraints are satisfied)
|
|
if fx < fg:
|
|
tmp = x[i, :].copy()
|
|
stepsize = np.sqrt(np.sum((g - tmp) ** 2))
|
|
if stepsize <= self.minstep:
|
|
print(f'Stopping search: Swarm best position change less than {self.minstep}')
|
|
return tmp, fx
|
|
else:
|
|
g = tmp.copy()
|
|
fg = fx
|
|
|
|
# Dynamically plot the error as the optimisation takes place
|
|
if self.pflag:
|
|
if it == 0:
|
|
xpp = [it]
|
|
ypp = [fg]
|
|
else:
|
|
xpp.append(it)
|
|
ypp.append(fg)
|
|
Particle_swarm.plot(xpp, ypp)
|
|
return g, fg
|
|
|
|
|
|
class Relaxation(object):
|
|
|
|
def __init__(self, number_of_debye_poles,
|
|
sigma, mu, mu_sigma,
|
|
material_name, plot=True,
|
|
optimizer=Particle_swarm,
|
|
optimizer_options={'pflag': True,
|
|
'swarmsize': 40,
|
|
'maxiter': 50,
|
|
'omega': 0.9,
|
|
'phip': 0.9,
|
|
'phig': 0.9,
|
|
'minstep': 1e-8}):
|
|
"""
|
|
Create Relaxation function object for complex material.
|
|
|
|
Args:
|
|
number_of_debye_poles (int): Number of Debye functions used to
|
|
approximate the given electric
|
|
permittivity.
|
|
sigma (float): Conductivity.
|
|
mu (float): Relative permabillity.
|
|
mu_sigma (float): Magnetic looses.
|
|
material_name (str): A string containing the given name of
|
|
the material (e.g. "Clay").
|
|
plot (bool): if True will plot the actual and the approximated
|
|
permittivity (it can be neglected).
|
|
The argument is optional and if neglected plot=False.
|
|
pso (list): A vector which contains 5 parameters [a1,a2,a3,a4,a5].
|
|
a1 denotes the number of particles to be used in
|
|
the particle swarm optimisation. a2 denotes the number
|
|
of iterations. a3 is the inertia component.
|
|
a4 is the cognitive, a5 - social scaling parameters.
|
|
By default pso = [40, 50, 0.9, 0.9, 0.9]
|
|
"""
|
|
self.number_of_debye_poles = number_of_debye_poles
|
|
self.sigma = sigma
|
|
self.mu = mu
|
|
self.mu_sigma = mu_sigma
|
|
self.material_name = material_name
|
|
self.plot = plot
|
|
self.optimizer = optimizer(**optimizer_options)
|
|
self.save = True
|
|
|
|
def run(self):
|
|
"""
|
|
Solve the problem described by the given relaxation function
|
|
(Havriliak-Negami function, Crim, Jonscher)
|
|
or data given from a text file.
|
|
"""
|
|
# Check the validity of the inputs
|
|
self.check_inputs()
|
|
# Print information about chosen approximation settings
|
|
self.print_info()
|
|
# Calculate both real and imaginary parts
|
|
# for the frequencies included in the vector freq
|
|
q = self.calculation()
|
|
# Set the real and the imaginary part of the relaxation function
|
|
self.rl, self.im = q.real, q.imag
|
|
# Calling the main optimisation module
|
|
self.optimize()
|
|
|
|
def check_inputs(self):
|
|
"""
|
|
Check the validity of the inputs.
|
|
"""
|
|
try:
|
|
d = [float(i) for i in
|
|
[self.number_of_debye_poles,
|
|
self.sigma, self.mu, self.mu_sigma]]
|
|
except ValueError:
|
|
sys.exit("The inputs should be numeric.")
|
|
if not isinstance(self.number_of_debye_poles, int):
|
|
sys.exit("The number of Debye poles must be integer.")
|
|
if (np.array(d) < 0).sum() != 0:
|
|
sys.exit("The inputs should be positive.")
|
|
|
|
def calculation(self):
|
|
"""
|
|
Approximate the given relaxation function
|
|
(Havriliak-Negami function, Crim, Jonscher) or based on raw data.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def print_info(self):
|
|
"""
|
|
Print information about chosen approximation settings.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def optimize(self):
|
|
"""
|
|
Calling the main optimisation module.
|
|
"""
|
|
# Define the lower and upper boundaries of search
|
|
lb = np.full(self.number_of_debye_poles,
|
|
-np.log10(np.max(self.freq)) - 3)
|
|
ub = np.full(self.number_of_debye_poles,
|
|
-np.log10(np.min(self.freq)) + 3)
|
|
# Call particle swarm optimisation to minimize the cost function.
|
|
xmp, _ = self.optimizer.fit(func=cost_function,
|
|
lb=lb, ub=ub,
|
|
funckwargs={'rl_g': self.rl,
|
|
'im_g': self.im,
|
|
'freq_g': self.freq}
|
|
)
|
|
_, _, mx, ee, rp, ip = linear(self.rl, self.im, xmp, self.freq)
|
|
# if one of the weights is negative increase the stabiliser
|
|
# and repeat the optimisation
|
|
# Print the results in gprMax format style
|
|
properties = self.print_output(xmp, mx, ee)
|
|
if self.save:
|
|
self.save_result(properties)
|
|
# Plot the actual and the approximate dielectric properties
|
|
if self.plot:
|
|
self.plot_result(rp + ee, ip)
|
|
|
|
def print_output(self, xmp, mx, ee):
|
|
"""Print out the resulting Debye parameters in a gprMax format"""
|
|
print("Debye expansion parameters: ")
|
|
print(f" |{'e_inf':^14s}|{'De':^14s}|{'log(t0)':^25s}|")
|
|
print("_" * 65)
|
|
for i in range(0, len(xmp)):
|
|
print("Debye {0:}:|{1:^14.5f}|{2:^14.5f}|{3:^25.5f}| "
|
|
.format(i + 1, ee/len(xmp), mx[i],
|
|
xmp[i]))
|
|
print("_" * 65)
|
|
|
|
# Print the Debye expnasion in a gprMax format
|
|
material_prop = "#material: {} {} {} {} {}".format(ee, self.sigma,
|
|
self.mu,
|
|
self.mu_sigma,
|
|
self.material_name)
|
|
print(material_prop)
|
|
material_prop = [material_prop + '\n']
|
|
dispersion_prop = "#add_dispersion_debye: {} {} {}".format(len(xmp),
|
|
mx[0],
|
|
10**xmp[0])
|
|
for i in range(1, len(xmp)):
|
|
dispersion_prop += " {} {}".format(mx[i], 10**xmp[i])
|
|
dispersion_prop += " {}".format(self.material_name)
|
|
print(dispersion_prop)
|
|
material_prop.append(dispersion_prop + '\n')
|
|
return material_prop
|
|
|
|
@staticmethod
|
|
def save_result(output, fdir="materials"):
|
|
"""Save the resulting Debye parameters in a gprMax format"""
|
|
if fdir != "materials" and os.path.isdir(fdir):
|
|
file_path = os.path.join(fdir, "my_materials.txt")
|
|
elif os.path.isdir("materials"):
|
|
file_path = os.path.join("materials",
|
|
"my_materials.txt")
|
|
elif os.path.isdir("user_libs/materials"):
|
|
file_path = os.path.join("user_libs", "materials",
|
|
"my_materials.txt")
|
|
else:
|
|
sys.exit("Cannot save material properties "
|
|
f"in {os.path.join(fdir, 'my_materials.txt')}!")
|
|
fileH = open(file_path, "a")
|
|
fileH.write(f"## {output[0].split(' ')[-1]}")
|
|
fileH.writelines(output)
|
|
fileH.write("\n")
|
|
fileH.close()
|
|
print(f"Material properties save at: {file_path}")
|
|
|
|
def plot_result(self, rl_exp, im_exp):
|
|
"""
|
|
Plot the actual and the approximated electric permittivity
|
|
using a semilogarithm X axes
|
|
"""
|
|
plt.close("all")
|
|
plt.rcParams["axes.facecolor"] = "black"
|
|
plt.semilogx(self.freq * 1e-6, rl_exp, "b-", linewidth=2.0,
|
|
label="Debye Expansion: Real")
|
|
plt.semilogx(self.freq * 1e-6, -im_exp, "w-", linewidth=2.0,
|
|
label="Debye Expansion: Imaginary")
|
|
plt.semilogx(self.freq * 1e-6, self.rl, "ro",
|
|
linewidth=2.0, label="Chosen Function: Real")
|
|
plt.semilogx(self.freq * 1e-6, -self.im, "go", linewidth=2.0,
|
|
label="Chosen Function: Imaginary")
|
|
|
|
plt.rcParams["axes.facecolor"] = "white"
|
|
plt.grid(b=True, which="major", color="w", linewidth=0.2,
|
|
linestyle="--")
|
|
axes = plt.gca()
|
|
axes.set_xlim([np.min(self.freq * 1e-6), np.max(self.freq * 1e-6)])
|
|
axes.set_ylim([-1, np.max(np.concatenate([self.rl, -self.im])) + 1])
|
|
plt.legend()
|
|
plt.xlabel("Frequency (MHz)")
|
|
plt.ylabel("Relative permittivity")
|
|
plt.show()
|
|
|
|
|
|
class HavriliakNegami(Relaxation):
|
|
|
|
def __init__(self, number_of_debye_poles,
|
|
freq1, freq2, alfa, bita, einf, de, t0,
|
|
sigma, mu, mu_sigma,
|
|
material_name, plot=False,
|
|
optimizer=Particle_swarm,
|
|
optimizer_options={'pflag': True,
|
|
'swarmsize': 40,
|
|
'maxiter': 50,
|
|
'omega': 0.9,
|
|
'phip': 0.9,
|
|
'phig': 0.9,
|
|
'minstep': 1e-8}):
|
|
"""
|
|
Approximate a given Havriliak-Negami function
|
|
Havriliak-Negami function = einf + de / (1 + (1j * 2 * pi * f *t0)**alfa )**bita,
|
|
where f is the frequency in Hz
|
|
|
|
Args:
|
|
number_of_debye_poles (int): Number of Debye functions used to
|
|
approximate the given electric
|
|
permittivity.
|
|
freq1 (float): Define the first bound of the frequency range
|
|
used to approximate the given function (Hz).
|
|
freq2 (float): Define the second bound of the frequency range
|
|
used to approximate the given function (Hz).
|
|
freq1 and freq2 can be either freq1 > freq2
|
|
or freq1 < freq2 but not freq1 = freq2.
|
|
einf (float): The real relative permittivity at infinity frequency
|
|
alfa (float): Havriliak-Negami parameter. Real positive float number
|
|
which varies 0 < alfa < 1. For alfa = 1 and bita !=0 & bita !=1
|
|
Havriliak-Negami transforms to Cole-Davidson function.
|
|
bita (float): Havriliak-Negami parameter. Real positive float number
|
|
which varies 0 < bita < 1. For bita = 1 and alfa !=0 & alfa !=1
|
|
Havriliak-Negami transforms to Cole-Cole function.
|
|
de (float): Havriliak-Negami parameter. Real positive float number.
|
|
de is the relative permittivity at infinite frequency
|
|
minus the relative permittivity at zero frequency.
|
|
t0 (float): Havriliak_Negami parameter. Real positive float number.
|
|
t0 is the relaxation time.
|
|
sigma (float): Conductivity.
|
|
mu (float): Relative permabillity.
|
|
mu_sigma (float): Magnetic looses.
|
|
material_name (str): A string containing the given name of
|
|
the material (e.g. "Clay").
|
|
plot (bool): if True will plot the actual and the approximated
|
|
permittivity (it can be neglected).
|
|
The argument is optional and if neglected plot=False.
|
|
pso (list): A vector which contains 5 parameters [a1,a2,a3,a4,a5].
|
|
a1 denotes the number of particles to be used in
|
|
the particle swarm optimisation. a2 denotes the number
|
|
of iterations. a3 is the inertia component.
|
|
a4 is the cognitive, a5 - social scaling parameters.
|
|
By default pso = [40, 50, 0.9, 0.9, 0.9]
|
|
"""
|
|
super(HavriliakNegami, self).__init__(number_of_debye_poles,
|
|
sigma, mu, mu_sigma,
|
|
material_name, plot, optimizer, optimizer_options)
|
|
# Place the lower frequency bound at fr1 and the upper frequency bound at fr2
|
|
if freq1 > freq2:
|
|
self.freq1, self.freq2 = freq2, freq1
|
|
else:
|
|
self.freq1, self.freq2 = freq1, freq2
|
|
# Choosing 50 frequencies logarithmicaly equally spaced between the bounds given
|
|
self.freq = np.logspace(np.log10(freq1), np.log10(freq2), 50)
|
|
self.einf, self.alfa, self.bita, self.de, self.t0 = einf, alfa, bita, de, t0
|
|
|
|
def check_inputs(self):
|
|
"""
|
|
Check the validity of the inputs.
|
|
"""
|
|
super(HavriliakNegami, self).check_inputs()
|
|
try:
|
|
d = [float(i) for i in
|
|
[self.freq1, self.freq2, self.alfa,
|
|
self.bita, self.einf, self.de, self.t0]]
|
|
except ValueError:
|
|
sys.exit("The inputs should be numeric.")
|
|
if (np.array(d) < 0).sum() != 0:
|
|
sys.exit("The inputs should be positive.")
|
|
if self.alfa > 1:
|
|
sys.exit("Alfa value must range between 0-1 (0 <= Alfa <= 1)")
|
|
if self.bita > 1:
|
|
sys.exit("Beta value must range between 0-1 (0 <= Beta <= 1)")
|
|
if self.freq1 == self.freq2:
|
|
sys.exit("Null frequency range")
|
|
|
|
def print_info(self):
|
|
"""Print information about chosen approximation settings."""
|
|
print(f"Approximating Havriliak-Negami function"
|
|
f" using {self.number_of_debye_poles} Debye poles")
|
|
print("Havriliak-Negami parameters : ")
|
|
print("De = {} \ne_inf = {} \nt0 = {} \nalfa = {} \nbita = {} "
|
|
.format(self.de, self.einf, self.t0, self.alfa, self.bita))
|
|
|
|
def calculation(self):
|
|
"""Calculates the Havriliak-Negami function for
|
|
the given parameters."""
|
|
return self.einf + self.de / (np.array(
|
|
1 + np.array(1j * 2 * np.pi *
|
|
self.freq * self.t0
|
|
) ** self.alfa)**self.bita)
|
|
|
|
|
|
class Jonscher(Relaxation):
|
|
def __init__(self, number_of_debye_poles,
|
|
freq1, freq2, einf, ap, omegap, n_p,
|
|
sigma, mu, mu_sigma,
|
|
material_name, plot=False,
|
|
optimizer=Particle_swarm,
|
|
optimizer_options={'pflag': True,
|
|
'swarmsize': 40,
|
|
'maxiter': 50,
|
|
'omega': 0.9,
|
|
'phip': 0.9,
|
|
'phig': 0.9,
|
|
'minstep': 1e-8}):
|
|
"""
|
|
Approximate a given Johnsher function
|
|
Jonscher function = einf - ap * ( -1j * 2 * pi * f / omegap)**n_p,
|
|
where f is the frequency in Hz
|
|
|
|
Args:
|
|
number_of_debye_poles (int): Number of Debye functions used to
|
|
approximate the given electric
|
|
permittivity.
|
|
freq1 (float): Define the first bound of the frequency range
|
|
used to approximate the given function (Hz).
|
|
freq2 (float): Define the second bound of the frequency range
|
|
used to approximate the given function (Hz).
|
|
freq1 and freq2 can be either freq1 > freq2
|
|
or freq1 < freq2 but not freq1 = freq2.
|
|
einf (float): The real relative permittivity at infinity frequency
|
|
ap (float): Jonscher parameter. Real positive float number.
|
|
omegap (float): Jonscher parameter. Real positive float number.
|
|
n_p (float): Jonscher parameter.
|
|
Real positive float number which varies 0 < n_p < 1.
|
|
sigma (float): Conductivity.
|
|
mu (float): Relative permabillity.
|
|
mu_sigma (float): Magnetic looses.
|
|
material_name (str): A string containing the given name of
|
|
the material (e.g. "Clay").
|
|
plot (bool): if True will plot the actual and the approximated
|
|
permittivity (it can be neglected).
|
|
The argument is optional and if neglected plot=False.
|
|
pso (list): A vector which contains 5 parameters [a1,a2,a3,a4,a5].
|
|
a1 denotes the number of particles to be used in
|
|
the particle swarm optimisation. a2 denotes the number
|
|
of iterations. a3 is the inertia component.
|
|
a4 is the cognitive, a5 - social scaling parameters.
|
|
By default pso = [40, 50, 0.9, 0.9, 0.9]
|
|
"""
|
|
super(Jonscher, self).__init__(number_of_debye_poles,
|
|
sigma, mu, mu_sigma,
|
|
material_name, plot, optimizer, optimizer_options)
|
|
# Place the lower frequency bound at fr1 and the upper frequency bound at fr2
|
|
if freq1 > freq2:
|
|
self.freq1, self.freq2 = freq2, freq1
|
|
else:
|
|
self.freq1, self.freq2 = freq1, freq2
|
|
# Choosing 50 frequencies logarithmicaly equally spaced between the bounds given
|
|
self.freq = np.logspace(np.log10(freq1), np.log10(freq2), 50)
|
|
self.einf, self.ap, self.omegap, self.n_p = einf, ap, omegap, n_p
|
|
|
|
def check_inputs(self):
|
|
"""
|
|
Check the validity of the inputs.
|
|
"""
|
|
super(Jonscher, self).check_inputs()
|
|
try:
|
|
d = [float(i) for i in
|
|
[self.freq1, self.freq2, self.n_p,
|
|
self.einf, self.omegap, self.ap]]
|
|
except ValueError:
|
|
sys.exit("The inputs should be numeric.")
|
|
if (np.array(d) < 0).sum() != 0:
|
|
sys.exit("The inputs should be positive.")
|
|
if self.n_p > 1:
|
|
sys.exit("n_p value must range between 0-1 (0 <= n_p <= 1)")
|
|
if self.freq1 == self.freq2:
|
|
sys.exit("Error: Null frequency range")
|
|
|
|
def print_info(self):
|
|
"""
|
|
Print information about chosen approximation settings
|
|
"""
|
|
print(f"Approximating Jonsher function"
|
|
f" using {self.number_of_debye_poles} Debye poles")
|
|
print("Jonhser function parameters : ")
|
|
print(f"omega_p = {self.omegap}\n"
|
|
f"e_inf = {self.einf}\n"
|
|
f"n_p = {self.n_p}\n"
|
|
f"A_p = {self.ap}")
|
|
|
|
def calculation(self):
|
|
"""Calculates the Q function for the given parameters"""
|
|
return self.einf + (self.ap * np.array(
|
|
2 * np.pi * self.freq / self.omegap
|
|
)**(self.n_p-1)) * (
|
|
1 - 1j / np.tan(self.n_p * np.pi/2))
|
|
|
|
|
|
class Crim(Relaxation):
|
|
|
|
def __init__(self, number_of_debye_poles,
|
|
freq1, freq2, a, f1, e1, sigma,
|
|
mu, mu_sigma, material_name, plot=False,
|
|
optimizer=Particle_swarm,
|
|
optimizer_options={'pflag': True,
|
|
'swarmsize': 40,
|
|
'maxiter': 50,
|
|
'omega': 0.9,
|
|
'phip': 0.9,
|
|
'phig': 0.9,
|
|
'minstep': 1e-8}):
|
|
"""
|
|
Approximate a given CRIM function
|
|
CRIM = (sum([volumetric_fraction[i]*(material[i][0] + material[i][1] /
|
|
(1 + (1j * 2 * pi * f *material[i][2])))**m_param
|
|
for i in range(0,len(material))]))**1/m_param
|
|
|
|
Args:
|
|
number_of_debye_poles (int): Number of Debye functions used to
|
|
approximate the given electric
|
|
permittivity.
|
|
freq1 (float): Define the first bound of the frequency range
|
|
used to approximate the given function (Hz).
|
|
freq2 (float): Define the second bound of the frequency range
|
|
used to approximate the given function (Hz).
|
|
freq1 and freq2 can be either freq1 > freq2
|
|
or freq1 < freq2 but not freq1 = freq2.
|
|
a (float): shape factor
|
|
f1 (list): volumetric fraction
|
|
e1 (list): materials
|
|
sigma (float): Conductivity.
|
|
mu (float): Relative permabillity.
|
|
mu_sigma (float): Magnetic looses.
|
|
material_name (str): A string containing the given name of
|
|
the material (e.g. "Clay").
|
|
plot (bool): if True will plot the actual and the approximated
|
|
permittivity (it can be neglected).
|
|
The argument is optional and if neglected plot=False.
|
|
pso (list): A vector which contains 5 parameters [a1,a2,a3,a4,a5].
|
|
a1 denotes the number of particles to be used in
|
|
the particle swarm optimisation. a2 denotes the number
|
|
of iterations. a3 is the inertia component.
|
|
a4 is the cognitive, a5 - social scaling parameters.
|
|
By default pso = [40, 50, 0.9, 0.9, 0.9]
|
|
"""
|
|
super(Crim, self).__init__(number_of_debye_poles,
|
|
sigma, mu, mu_sigma,
|
|
material_name, plot, optimizer, optimizer_options)
|
|
# Place the lower frequency bound at fr1 and the upper frequency bound at fr2
|
|
if freq1 > freq2:
|
|
self.freq1, self.freq2 = freq2, freq1
|
|
else:
|
|
self.freq1, self.freq2 = freq1, freq2
|
|
# Choosing 50 frequencies logarithmicaly equally spaced between the bounds given
|
|
self.freq = np.logspace(np.log10(freq1), np.log10(freq2), 50)
|
|
self.a, self.f1, self.e1 = a, f1, e1
|
|
|
|
def check_inputs(self):
|
|
"""
|
|
Check the validity of the inputs.
|
|
"""
|
|
super(Crim, self).check_inputs()
|
|
try:
|
|
d = [float(i) for i in
|
|
[self.freq1, self.freq2, self.a]]
|
|
except ValueError:
|
|
sys.exit("The inputs should be numeric.")
|
|
if (np.array(d) < 0).sum() != 0:
|
|
sys.exit("The inputs should be positive.")
|
|
if len(self.f1) != len(self.e1):
|
|
sys.exit("Number of volumetric volumes does not match the dielectric properties")
|
|
# Check if the materials are at least two
|
|
if len(self.f1) < 2:
|
|
sys.exit("The materials should be at least 2")
|
|
# Check if the frequency range is null
|
|
if self.freq1 == self.freq2:
|
|
sys.exit("Null frequency range")
|
|
# Check if the inputs are positive
|
|
f = [i for i in self.f1 if i < 0]
|
|
if len(f) != 0:
|
|
sys.exit("Error: The inputs should be positive")
|
|
for i in range(0, len(self.f1)):
|
|
f = [i for i in self.e1[i][:] if i < 0]
|
|
if len(f) != 0:
|
|
sys.exit("Error: The inputs should be positive")
|
|
# Check if the summation of the volumetric fractions equal to one
|
|
if np.sum(self.f1) != 1:
|
|
sys.exit("Error: The summation of volumetric volumes should be equal to 1")
|
|
|
|
def print_info(self):
|
|
"""
|
|
Print information about chosen approximation settings
|
|
"""
|
|
print(f"Approximating Complex Refractive Index Model (CRIM)"
|
|
f" using {self.number_of_debye_poles} Debye poles")
|
|
print("CRIM parameters : ")
|
|
for i in range(0, len(self.f1)):
|
|
print("Material {} :".format(i+1))
|
|
print("---------------------------------")
|
|
print(" Vol. fraction = {}".format(self.f1[i]))
|
|
print(" e_inf = {}".format(self.e1[i][0]))
|
|
print(" De = {}".format(self.e1[i][1]))
|
|
print(" log(t0) = {}".format(np.log10(self.e1[i][2])))
|
|
|
|
def calculation(self):
|
|
"""Calculates the Crim function for the given parameters"""
|
|
q = np.zeros(len(self.freq))
|
|
for i in range(len(self.f1)):
|
|
q = q + self.f1[i]*np.array(
|
|
[self.e1[i][0] + self.e1[i][1] /
|
|
(np.array(1 + np.array(1j * 2 * np.pi * f * self.e1[i][2])))
|
|
for f in self.freq])**self.a
|
|
return q**(1 / self.a)
|
|
|
|
|
|
class Rawdata(Relaxation):
|
|
|
|
def __init__(self, number_of_debye_poles,
|
|
filename,
|
|
sigma, mu, mu_sigma,
|
|
material_name, plot=False,
|
|
optimizer=Particle_swarm,
|
|
optimizer_options={'pflag': True,
|
|
'swarmsize': 40,
|
|
'maxiter': 50,
|
|
'omega': 0.9,
|
|
'phip': 0.9,
|
|
'phig': 0.9,
|
|
'minstep': 1e-8}):
|
|
"""
|
|
Interpolate data given from a text file
|
|
|
|
Args:
|
|
number_of_debye_poles (int): Number of Debye functions used to
|
|
approximate the given electric
|
|
permittivity.
|
|
filename (str): text file which contains three columns:
|
|
frequency (Hz),Real,Imaginary (separated by comma).
|
|
sigma (float): Conductivity.
|
|
mu (float): Relative permabillity.
|
|
mu_sigma (float): Magnetic looses.
|
|
material_name (str): A string containing the given name of
|
|
the material (e.g. "Clay").
|
|
plot (bool): if True will plot the actual and the approximated
|
|
permittivity (it can be neglected).
|
|
The argument is optional and if neglected plot=False.
|
|
pso (list): A vector which contains 5 parameters [a1,a2,a3,a4,a5].
|
|
a1 denotes the number of particles to be used in
|
|
the particle swarm optimisation. a2 denotes the number
|
|
of iterations. a3 is the inertia component.
|
|
a4 is the cognitive, a5 - social scaling parameters.
|
|
By default pso = [40, 50, 0.9, 0.9, 0.9]
|
|
"""
|
|
super(Rawdata, self).__init__(number_of_debye_poles,
|
|
sigma, mu, mu_sigma,
|
|
material_name, plot,
|
|
optimizer, optimizer_options)
|
|
self.filename = filename
|
|
|
|
def check_inputs(self):
|
|
"""
|
|
Check the validity of the inputs.
|
|
"""
|
|
super(Rawdata, self).check_inputs()
|
|
if not os.path.isfile(self.filename):
|
|
sys.exit("File doesnt exists!")
|
|
|
|
def print_info(self):
|
|
"""
|
|
Print information about chosen approximation settings
|
|
"""
|
|
print(f"Approximating the function given"
|
|
f" from file name {self.filename}"
|
|
f" using {self.number_of_debye_poles} Debye poles")
|
|
|
|
def calculation(self):
|
|
"""Interpolate real and imaginary part from data.
|
|
Column framework of the input file three columns comma-separated
|
|
Frequency(Hz),Real,Imaginary
|
|
"""
|
|
# Read the file
|
|
with open(self.filename) as f:
|
|
try:
|
|
array = np.array(
|
|
[[float(x) for x in line.split(",")] for line in f]
|
|
)
|
|
except ValueError:
|
|
sys.exit("Error: The inputs should be numeric")
|
|
|
|
# Interpolate using 50 equally logarithmicaly spaced frequencies
|
|
self.freq = np.logspace(np.log10(min(array[:, 0])) + 0.00001,
|
|
np.log10(max(array[:, 0])) - 0.00001,
|
|
50)
|
|
rl_interp = scipy.interpolate.interp1d(array[:, 0], array[:, 1])
|
|
im_interp = scipy.interpolate.interp1d(array[:, 0], array[:, 2])
|
|
return rl_interp(self.freq) - 1j * im_interp(self.freq)
|
|
|
|
|
|
def cost_function(x, rl_g, im_g, freq_g):
|
|
"""
|
|
The cost function is the average error between
|
|
the actual and the approximated electric permittivity.
|
|
|
|
Returns:
|
|
cost: The final error
|
|
"""
|
|
cost, cost2, _, _, _, _ = linear(rl_g, im_g, x, freq_g)
|
|
cost = cost + cost2
|
|
return cost
|
|
|
|
|
|
def linear(rl, im, logt, freq):
|
|
"""
|
|
Returns:
|
|
x: Resulting optimised weights for the given relaxation times
|
|
cost: The final error
|
|
ee: Average error between the actual and the approximated real part
|
|
rp: The real part of the permittivity for the optimised relaxation
|
|
times and weights for the frequnecies included in freq
|
|
ip: The imaginary part of the permittivity for the optimised
|
|
relaxation times and weights for the frequnecies included in freq
|
|
"""
|
|
# The relaxation time of the Debyes are given at as logarithms
|
|
# logt=log10(t0) for efficiency during the optimisation
|
|
# Here they are transformed back t0=10**logt
|
|
tt = [10**logt[i] for i in range(0, len(logt))]
|
|
# y = Ax , here the A matrix for the real and the imaginary part is builded
|
|
d_r = np.array(
|
|
[[calc([1, 1, 0, 1, tt[i]], [freq[j]])[0]
|
|
for i in range(0, len(tt))] for j in
|
|
range(0, len(freq))])
|
|
d = np.array(
|
|
[[calc([1, 1, 0, 1, tt[i]], [freq[j]])[1]
|
|
for i in range(0, len(tt))] for j in
|
|
range(0, len(freq))])
|
|
|
|
# Adding dumping (Marquart least squares)
|
|
# Solving the overdetermined system y=Ax
|
|
x = np.abs(np.linalg.lstsq(d, im)[0])
|
|
mx, my, my2 = np.matrix(x), np.matrix(d), np.matrix(d_r)
|
|
rp, ip = my2 * np.transpose(mx), my * np.transpose(mx)
|
|
cost = np.sum([np.abs(ip[i]-im[i]) for i in range(0, len(im))])/len(im)
|
|
ee = (np.mean(rl - rp))
|
|
if ee < 1:
|
|
ee = 1
|
|
cost2 = np.sum([np.abs(rp[i] - rl[i] + ee)
|
|
for i in range(0, len(im))])/len(im)
|
|
return cost, cost2, x, ee, rp, ip
|
|
|
|
|
|
def calc(cal_inputs, freq):
|
|
# Calculates the Havriliak-Negami function for the given cal_inputs
|
|
q = [cal_inputs[2] + cal_inputs[3] / (np.array(1 + np.array(
|
|
1j * 2 * np.pi * f * cal_inputs[4]) ** cal_inputs[0]
|
|
) ** cal_inputs[1]) for f in freq]
|
|
# Return the real and the imaginary part of the relaxation function
|
|
if len(q) > 1:
|
|
rl = [q[i].real for i in range(0, len(q))]
|
|
im = [q[i].imag for i in range(0, len(q))]
|
|
else:
|
|
rl = q[0].real
|
|
im = q[0].imag
|
|
return rl, im
|
|
|
|
|
|
if __name__ == "__main__":
|
|
np.random.seed(111)
|
|
setup = Rawdata(3, "Test.txt", 0.1, 1, 0.1, "M1", plot=True)
|
|
setup.run()
|
|
setup = HavriliakNegami(6, 1e12, 1e-3, 0.5, 1, 10, 5,
|
|
1e-6, 0.1, 1, 0, "M2", plot=True)
|
|
setup.run()
|
|
setup = Jonscher(4, 1e6, 1e-5, 50, 1, 1e5, 0.7,
|
|
0.1, 1, 0.1, "M3", plot=True)
|
|
setup.run()
|
|
f = [0.5, 0.5]
|
|
material1 = [3, 25, 1e6]
|
|
material2 = [3, 0, 1e3]
|
|
materials = [material1, material2]
|
|
setup = Crim(2, 1*1e-1, 1e-9, 0.5, f, materials, 0.1,
|
|
1, 0, "M4", plot=True)
|
|
setup.run()
|