你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-04 11:36:52 +08:00
700 行
35 KiB
Matlab
700 行
35 KiB
Matlab
% outputfile_converter.m - converts gprMax merged output HDF5 file to
|
|
% * RD3 16bit (Mala GeoScience),
|
|
% * DZT 16bit (Geophysical Survey Systems Inc.),
|
|
% * DT1 16bit (Sensors & Software Inc.)
|
|
% * IPRB 16bit (Impulse Radar)
|
|
%
|
|
% Author: Dimitrios Angelis
|
|
% Copyright: 2017-2020
|
|
% Last modified: 28/05/2020
|
|
|
|
|
|
clear, clc, close all;
|
|
|
|
|
|
% Select file =============================================================
|
|
[infile, path] = uigetfile('*.out', 'Select gprMax output file', ...
|
|
'Multiselect', 'Off');
|
|
if isequal(infile, 0)
|
|
infile = [];
|
|
path = [];
|
|
HDR = [];
|
|
data = [];
|
|
return
|
|
end
|
|
|
|
|
|
% File name, path name and file extension =================================
|
|
HDR.fname = strrep(lower(infile), '.out', '');
|
|
HDR.pname = path;
|
|
HDR.fext = 'out';
|
|
|
|
|
|
% Additional information ==================================================
|
|
% The HDF5 file does not contain information about the centre frequency of
|
|
% the waveform, the Tx-Rx separation distance and the trace step. The user
|
|
% needs to provide this information.
|
|
while 1
|
|
prompt = {'Rx-component (Ex or Ey or Ez)', ...
|
|
'Tx Centre Frequency (MHz)', ...
|
|
'Tx-Rx Distance (m)', ...
|
|
'Trace Interval / Step (m)'};
|
|
dlg_title = 'Additional Information';
|
|
answer = inputdlg(prompt, dlg_title, [1 40]);
|
|
answers = str2double(answer);
|
|
if isempty(answer)
|
|
HDR = [];
|
|
data = [];
|
|
return
|
|
elseif strcmp(answer(1), 'EX') == 0 & ...
|
|
strcmp(answer(1), 'Ex') == 0 & ...
|
|
strcmp(answer(1), 'ex') == 0 & ...
|
|
strcmp(answer(1), 'EY') == 0 & ...
|
|
strcmp(answer(1), 'Ey') == 0 & ...
|
|
strcmp(answer(1), 'ey') == 0 & ...
|
|
strcmp(answer(1), 'EZ') == 0 & ...
|
|
strcmp(answer(1), 'Ez') == 0 & ...
|
|
strcmp(answer(1), 'ez') == 0 || ...
|
|
isnan(answers(2)) || answers(2) <= 0 || ...
|
|
isnan(answers(3)) || answers(3) < 0 || ...
|
|
isnan(answers(4)) || answers(4) <= 0
|
|
continue
|
|
else
|
|
break
|
|
end
|
|
end
|
|
|
|
|
|
% Read data from HDF5 file ================================================
|
|
infile = [HDR.pname infile];
|
|
% h5disp(infile);
|
|
|
|
if strcmp(answer(1), 'EX') || strcmp(answer(1), 'Ex') || strcmp(answer(1), 'ex')
|
|
dataex = h5read(infile, '/rxs/rx1/Ex');
|
|
data = dataex';
|
|
elseif strcmp(answer(1), 'EY') || strcmp(answer(1), 'Ey') || strcmp(answer(1), 'ey')
|
|
dataey = h5read(infile, '/rxs/rx1/Ey');
|
|
data = dataey';
|
|
elseif strcmp(answer(1), 'EZ') || strcmp(answer(1), 'Ez') || strcmp(answer(1), 'ez')
|
|
dataez = h5read(infile, '/rxs/rx1/Ez');
|
|
data = dataez';
|
|
end
|
|
|
|
|
|
% Sigle to double precision ===============================================
|
|
data = double(data);
|
|
|
|
|
|
% Create header ===========================================================
|
|
HDR.centre_freq = answers(2); % Centre frequency (MHz)
|
|
HDR.ant_sep = answers(3); % Antenna seperation / Tx-Rx distance (m)
|
|
HDR.trac_int = answers(4); % Trace interval / step (m)
|
|
HDR.samp_int = h5readatt(infile, '/', 'dt') * 10^9; % Sampling interval (ns)
|
|
HDR.samp_freq = (1 / HDR.samp_int) * 10^3; % Sampling frequency (MHz)
|
|
[HDR.num_samp, HDR.num_trac] = size(data); % Number of samples & traces
|
|
HDR.time_window = HDR.num_samp * HDR.samp_int; % Time window (ns)
|
|
HDR.antenna = ['gprMax ', num2str(HDR.centre_freq), 'MHz']; % Antenna name
|
|
|
|
|
|
% *************************************************************************
|
|
% ******************************** Optional *******************************
|
|
|
|
% Resample to 1024 samples ================================================
|
|
% I perform this step for either 512 or 1024 samples because many GPR data
|
|
% visulization/processing software cannot load files with more samples.
|
|
tx1 = 1 : HDR.num_samp;
|
|
fs1 = 1024 / HDR.num_samp; % <------- 1024 samples
|
|
data = resample(data, tx1, fs1, 'pchip');
|
|
|
|
[HDR.num_samp, ~] = size(data); % New number of samples after resampling
|
|
HDR.samp_int = HDR.time_window / HDR.num_samp; % New sampling interval (ns) after resampling
|
|
HDR.samp_freq = (1 / HDR.samp_int) * 10^3; % New sampling frequency (MHz) after resampling
|
|
|
|
% *************************************************************************
|
|
% *************************************************************************
|
|
|
|
|
|
% *************************************************************************
|
|
% ******************************** Optional *******************************
|
|
|
|
% Convert to 16 bit scale =================================================
|
|
data = data * 32767.5 ./ max(max(abs(data))); % signal * ((1 - 1 / 2^bitrate) * 32768) / max(signal)
|
|
data(data > 32767) = 32767;
|
|
data(data < -32768) = -32768;
|
|
data = round(data);
|
|
|
|
%**************************************************************************
|
|
%**************************************************************************
|
|
|
|
|
|
% Plots ===================================================================
|
|
pmin = min(data(:)); % Minimun plot scale
|
|
pmax = max(data(:)); % Maximum plot scale
|
|
|
|
x = 0 : HDR.trac_int : (HDR.num_trac - 1) * HDR.trac_int; % Distance of each trace (m)
|
|
t = HDR.samp_int : HDR.samp_int : HDR.num_samp * HDR.samp_int; % Time of each sample (ns)
|
|
|
|
% Bscan plot
|
|
f1 = figure('Name', 'Bscan', ...
|
|
'NumberTitle', 'off', ...
|
|
'Menubar', 'None', ...
|
|
'Toolbar', 'Figure');
|
|
|
|
clims = [pmin pmax];
|
|
colormap (bone(256)); % Black(negative) to white(positive)
|
|
im1 = imagesc(x, t, data, clims);
|
|
set(im1, 'cdatamapping', 'scaled');
|
|
title(HDR.fname);
|
|
xlabel('Distance (m)');
|
|
ylabel('Time (ns)');
|
|
ax1 = gca;
|
|
ax1.XAxisLocation = 'Top';
|
|
ax1.FontSize = 12;
|
|
box off;
|
|
movegui(f1, 'northeast');
|
|
|
|
|
|
% Frequency spectrum plot
|
|
m = 2.^nextpow2(HDR.num_samp);
|
|
|
|
amp = fft(data, m);
|
|
amp = (abs(amp(1 : m / 2, :)) / m) * 2;
|
|
amp = mean(amp, 2);
|
|
|
|
freq = HDR.samp_freq .* (0 : (m / 2) - 1) / m;
|
|
|
|
f2 = figure('Name', 'Frequency Spectrum', ...
|
|
'NumberTitle', 'off', ...
|
|
'Menubar', 'None', ...
|
|
'Toolbar', 'Figure');
|
|
|
|
area(freq, amp, 'FaceColor', 'black');
|
|
title(HDR.fname);
|
|
xlabel('Frequency (MHz)');
|
|
ylabel('Amplitude');
|
|
ax2 = gca;
|
|
ax2.FontSize = 12;
|
|
box off;
|
|
movegui(f2, 'southeast');
|
|
|
|
|
|
% Export option: RD3 or DZT or DT1 or IPRB ================================
|
|
while 1
|
|
prompt = {'1 = RD3, 2 = DZT, 3 = DT1, 4 = IPRB'};
|
|
dlg_title = 'Choose GPR Format';
|
|
answer = inputdlg(prompt, dlg_title, [1 40]);
|
|
answer = str2double(answer);
|
|
if isempty(answer)
|
|
return
|
|
elseif ~isnumeric(answer) || answer ~= 1 && answer ~= 2 ...
|
|
&& answer ~= 3 && answer ~= 4
|
|
continue
|
|
else
|
|
gpr_format = answer;
|
|
break
|
|
end
|
|
end
|
|
|
|
|
|
wb = waitbar(0, 'Exporting...', 'Name', 'Exporting File');
|
|
|
|
|
|
% =========================================================================
|
|
% RAD / RD3, Mala GeoScience ==============================================
|
|
|
|
% RAD is the header file.
|
|
% In this file is all the important information such as number of samples,
|
|
% traces, etc.
|
|
|
|
% RD3 is the data file.
|
|
% This file contains only the data (amplitude values) in a 16 bit binary
|
|
% form.
|
|
|
|
if gpr_format == 1
|
|
% Header structure
|
|
HDR.fname = HDR.fname; % File name
|
|
HDR.num_samp = HDR.num_samp; % Number of samples
|
|
HDR.samp_freq = HDR.samp_freq; % Sampling frequency (MHz)
|
|
HDR.frequency_steps = 1; % Frequency steps
|
|
HDR.signal_pos = 0; % Signal position
|
|
HDR.raw_signal_pos = 0; % Raw signal position
|
|
HDR.distance_flag = 1; % Distance flag: 0 time interval, 1 distance interval
|
|
HDR.time_flag = 0; % Time flag : 0 distance interval, 1 time interval
|
|
HDR.program_flag = 0; % Program flag
|
|
HDR.external_flag = 0; % External flag
|
|
HDR.trac_int_sec = 0; % Trace interval in seconds(only if Time flag = 1)
|
|
HDR.trac_int = HDR.trac_int; % Trace interval in meters (only if Distance flag = 1)
|
|
HDR.operator = 'Unknown'; % Operator
|
|
HDR.customer = 'Unknown'; % Customer
|
|
HDR.site = 'gprMax'; % Site
|
|
HDR.antenna = HDR.antenna; % Antenna name
|
|
HDR.antenna_orientation = 'NOT VALID FIELD'; % Antenna orientation
|
|
HDR.ant_sep = HDR.ant_sep; % Antenna seperation / Tx-Rx distance (m)
|
|
HDR.comment = '----'; % Comment
|
|
HDR.time_window = HDR.time_window; % Time window (ns)
|
|
HDR.stacks = 1; % Stacks
|
|
HDR.stack_exponent = 0; % Stack exponent
|
|
HDR.stacking_time = 0; % Stacking Time
|
|
HDR.num_trac = HDR.num_trac; % Number of traces
|
|
HDR.stop_pos = HDR.num_trac * HDR.trac_int; % Stop position (m)
|
|
HDR.system_calibration = 0;
|
|
HDR.start_pos = 0; % Start position (m)
|
|
HDR.short_flag = 1;
|
|
HDR.intermediate_flag = 0;
|
|
HDR.long_flag = 0;
|
|
HDR.preprocessing = 0;
|
|
HDR.high = 0;
|
|
HDR.low = 0;
|
|
HDR.fixed_increment = 0;
|
|
HDR.fixed_moves_up = 0;
|
|
HDR.fixed_moves_down = 1;
|
|
HDR.fixed_position = 0;
|
|
HDR.wheel_calibration = 0;
|
|
HDR.positive_direction = 1;
|
|
|
|
% RAD file
|
|
fid = fopen([HDR.fname '.rad'], 'w');
|
|
fprintf(fid, 'SAMPLES:%i\r\n', HDR.num_samp);
|
|
fprintf(fid, 'FREQUENCY:%0.6f\r\n', HDR.samp_freq);
|
|
fprintf(fid, 'FREQUENCY STEPS:%i\r\n', HDR.frequency_steps);
|
|
fprintf(fid, 'SIGNAL POSITION:%0.6f\r\n', HDR.signal_pos);
|
|
fprintf(fid, 'RAW SIGNAL POSITION:%i\r\n', HDR.raw_signal_pos);
|
|
fprintf(fid, 'DISTANCE FLAG:%i\r\n', HDR.distance_flag);
|
|
fprintf(fid, 'TIME FLAG:%i\r\n', HDR.time_flag);
|
|
fprintf(fid, 'PROGRAM FLAG:%i\r\n', HDR.program_flag);
|
|
fprintf(fid, 'EXTERNAL FLAG:%i\r\n', HDR.external_flag);
|
|
fprintf(fid, 'TIME INTERVAL:%0.6f\r\n', HDR.trac_int_sec);
|
|
fprintf(fid, 'DISTANCE INTERVAL:%0.6f\r\n', HDR.trac_int);
|
|
fprintf(fid, 'OPERATOR:%s\r\n', HDR.operator);
|
|
fprintf(fid, 'CUSTOMER:%s\r\n', HDR.customer);
|
|
fprintf(fid, 'SITE:%s\r\n', HDR.site);
|
|
fprintf(fid, 'ANTENNAS:%s\r\n', HDR.antenna);
|
|
fprintf(fid, 'ANTENNA ORIENTATION:%s\r\n', HDR.antenna_orientation);
|
|
fprintf(fid, 'ANTENNA SEPARATION:%0.6f\r\n', HDR.ant_sep);
|
|
fprintf(fid, 'COMMENT:%s\r\n', HDR.comment);
|
|
fprintf(fid, 'TIMEWINDOW:%0.6f\r\n', HDR.time_window);
|
|
fprintf(fid, 'STACKS:%i\r\n', HDR.stacks);
|
|
fprintf(fid, 'STACK EXPONENT:%i\r\n', HDR.stack_exponent);
|
|
fprintf(fid, 'STACKING TIME:%0.6f\r\n', HDR.stacking_time);
|
|
fprintf(fid, 'LAST TRACE:%i\r\n', HDR.num_trac);
|
|
fprintf(fid, 'STOP POSITION:%0.6f\r\n', HDR.stop_pos);
|
|
fprintf(fid, 'SYSTEM CALIBRATION:%0.6f\r\n', HDR.system_calibration);
|
|
fprintf(fid, 'START POSITION:%0.6f\r\n', HDR.start_pos);
|
|
fprintf(fid, 'SHORT FLAG:%i\r\n', HDR.short_flag);
|
|
fprintf(fid, 'INTERMEDIATE FLAG:%i\r\n', HDR.intermediate_flag);
|
|
fprintf(fid, 'LONG FLAG:%i\r\n', HDR.long_flag);
|
|
fprintf(fid, 'PREPROCESSING:%i\r\n', HDR.preprocessing);
|
|
fprintf(fid, 'HIGH:%i\r\n', HDR.high);
|
|
fprintf(fid, 'LOW:%i\r\n', HDR.low);
|
|
fprintf(fid, 'FIXED INCREMENT:%0.6f\r\n', HDR.fixed_increment);
|
|
fprintf(fid, 'FIXED MOVES UP:%i\r\n', HDR.fixed_moves_up);
|
|
fprintf(fid, 'FIXED MOVES DOWN:%i\r\n', 1);
|
|
fprintf(fid, 'FIXED POSITION:%0.6f\r\n', HDR.fixed_moves_down);
|
|
fprintf(fid, 'WHEEL CALIBRATION:%0.6f\r\n', HDR.wheel_calibration);
|
|
fprintf(fid, 'POSITIVE DIRECTION:%i\r\n', HDR.positive_direction);
|
|
fclose(fid);
|
|
|
|
% RD3 file
|
|
fid = fopen([HDR.fname '.rd3'], 'w');
|
|
fwrite(fid, data, 'short');
|
|
fclose(fid);
|
|
|
|
|
|
% =========================================================================
|
|
% DZT, Geophysical Survey Systems Inc. (GSSI) =============================
|
|
|
|
% DZT is a binary file that conists of the file header with all the
|
|
% important inforation such as number of samples, traces, channels, etc.,
|
|
% followed by the data section.
|
|
|
|
% All the information is contained in this file except the Tx-Rx separation
|
|
% distance. It is possible that the official GSSI software has stored this
|
|
% information and uses the antenna name to detect it. All the other GPR
|
|
% data visualization/processing software do not detect the Tx-Rx separation
|
|
% distance.
|
|
|
|
% DZT file can be either 8/16/32 bit. Since I have rescaled gprMax output
|
|
% data into a 16bit scale, this file will also be 16bit.
|
|
|
|
elseif gpr_format == 2
|
|
% Header structure
|
|
HDR.fname = HDR.fname; % File name
|
|
HDR.tag = 255; % Header = 255
|
|
HDR.data_offset = 1024; % Offset to data from the beginning of file
|
|
HDR.num_samp = HDR.num_samp; % Number of samples
|
|
HDR.data_format = 16; % Bits per data word (8, 16, 32)
|
|
HDR.binary_offset = 32768; % Binary offset, 8 bit = 128, 16 bit = 32768
|
|
HDR.scans_per_second = 0; % Scans per second
|
|
HDR.scans_per_meter = 1 / HDR.trac_int; % Scans per meter
|
|
HDR.meters_per_mark = 0; % Meters per mark
|
|
HDR.zero_time_adjustment = 0; % Time zero adjustment (ns)
|
|
HDR.time_window = HDR.time_window; % Time window (with no corrections i.e zero time)
|
|
HDR.scans_per_pass = 0; % Scan per pass for 2D files
|
|
|
|
HDR.createdate.sec = 0 / 2; % Structure, date created
|
|
HDR.createdate.min = 0;
|
|
HDR.createdate.hour = 0;
|
|
HDR.createdate.day = 0;
|
|
HDR.createdate.month = 0;
|
|
HDR.createdate.year = 0 - 1980;
|
|
|
|
date_time = clock;
|
|
HDR.modifydate.sec = date_time(6) / 2; % Structure, date modified
|
|
HDR.modifydate.min = date_time(5);
|
|
HDR.modifydate.hour = date_time(4);
|
|
HDR.modifydate.day = date_time(3);
|
|
HDR.modifydate.month = date_time(2);
|
|
HDR.modifydate.year = date_time(1) - 1980;
|
|
|
|
HDR.offset_to_range_gain = 0; % Offset to range gain
|
|
HDR.size_of_range_gain = 0; % Size of range gain
|
|
HDR.offset_to_text = 0; % Offset to text
|
|
HDR.size_of_text = 0; % Size of text
|
|
HDR.offset_to_proc_his = 0; % Offset to processing history
|
|
HDR.size_of_proc_his = 0; % Size of processing history
|
|
HDR.num_channels = 1; % Number of channels
|
|
HDR.dielectric_constant = 8; % Dielectric constant (8 is a random number)
|
|
HDR.top_position = 0; % Top position
|
|
|
|
c = 299792458;
|
|
v = (c / sqrt(HDR.dielectric_constant)) * 10^-9;
|
|
HDR.range_depth = v * (HDR.time_window / 2); % Range depth (m)
|
|
|
|
HDR.reserved = zeros(31, 1); % Reserved
|
|
HDR.data_type = 0; % Data type
|
|
|
|
if length(HDR.antenna) == 14 % Antenna name
|
|
HDR.antenna = HDR.antenna;
|
|
elseif length(HDR.antenna) < 14
|
|
if verLessThan('matlab', '9.1')
|
|
HDR.antenna = [HDR.antenna repmat(' ', ...
|
|
1, 14 - length(HDR.antenna))];
|
|
else
|
|
HDR.antenna = pad(HDR.antenna, 14, 'right');
|
|
end
|
|
elseif length(HDR.antenna) > 14
|
|
HDR.antenna = HDR.antenna(1 : 14);
|
|
end
|
|
|
|
HDR.channel_mask = 0; % Channel mask
|
|
|
|
if length(HDR.fname) == 12 % Raw file name (File name during survey)
|
|
HDR.raw_file_name = HDR.fname;
|
|
elseif length(HDR.fname) < 12
|
|
if verLessThan('matlab', '9.1')
|
|
HDR.raw_file_name = [HDR.raw_file_name repmat(' ', ...
|
|
1, 12 - length(HDR.raw_file_name))];
|
|
else
|
|
HDR.raw_file_name = pad(HDR.fname, 12, 'right');
|
|
end
|
|
elseif length(HDR.fname) > 12
|
|
HDR.raw_file_name = HDR.fname(1 : 12);
|
|
end
|
|
|
|
HDR.checksum = 0; % Checksum
|
|
HDR.num_gain_points = 0; % Number of gain points
|
|
HDR.range_gain_db = []; % Range gain in db
|
|
HDR.variable = zeros(896, 1);
|
|
|
|
% DZT file
|
|
fid = fopen([HDR.fname '.dzt'], 'w');
|
|
fwrite(fid, HDR.tag, 'ushort');
|
|
fwrite(fid, HDR.data_offset, 'ushort');
|
|
fwrite(fid, HDR.num_samp, 'ushort');
|
|
fwrite(fid, HDR.data_format, 'ushort');
|
|
fwrite(fid, HDR.binary_offset, 'ushort');
|
|
fwrite(fid, HDR.scans_per_second, 'float');
|
|
fwrite(fid, HDR.scans_per_meter, 'float');
|
|
fwrite(fid, HDR.meters_per_mark, 'float');
|
|
fwrite(fid, HDR.zero_time_adjustment, 'float');
|
|
fwrite(fid, HDR.time_window, 'float');
|
|
fwrite(fid, HDR.scans_per_pass, 'ushort');
|
|
fwrite(fid, HDR.createdate.sec, 'ubit5');
|
|
fwrite(fid, HDR.createdate.min, 'ubit6');
|
|
fwrite(fid, HDR.createdate.hour, 'ubit5');
|
|
fwrite(fid, HDR.createdate.day, 'ubit5');
|
|
fwrite(fid, HDR.createdate.month, 'ubit4');
|
|
fwrite(fid, HDR.createdate.year, 'ubit7');
|
|
fwrite(fid, HDR.modifydate.sec, 'ubit5');
|
|
fwrite(fid, HDR.modifydate.min, 'ubit6');
|
|
fwrite(fid, HDR.modifydate.hour, 'ubit5');
|
|
fwrite(fid, HDR.modifydate.day, 'ubit5');
|
|
fwrite(fid, HDR.modifydate.month, 'ubit4');
|
|
fwrite(fid, HDR.modifydate.year, 'ubit7');
|
|
fwrite(fid, HDR.offset_to_range_gain, 'ushort');
|
|
fwrite(fid, HDR.size_of_range_gain, 'ushort');
|
|
fwrite(fid, HDR.offset_to_text, 'ushort');
|
|
fwrite(fid, HDR.size_of_text, 'ushort');
|
|
fwrite(fid, HDR.offset_to_proc_his, 'ushort');
|
|
fwrite(fid, HDR.size_of_proc_his, 'ushort');
|
|
fwrite(fid, HDR.num_channels, 'ushort');
|
|
fwrite(fid, HDR.dielectric_constant, 'float');
|
|
fwrite(fid, HDR.top_position, 'float');
|
|
fwrite(fid, HDR.range_depth, 'float');
|
|
fwrite(fid, HDR.reserved, 'char');
|
|
fwrite(fid, HDR.data_type, 'char');
|
|
fwrite(fid, HDR.antenna, 'char');
|
|
fwrite(fid, HDR.channel_mask, 'ushort');
|
|
fwrite(fid, HDR.raw_file_name, 'char');
|
|
fwrite(fid, HDR.checksum, 'ushort');
|
|
fwrite(fid, HDR.num_gain_points, 'ushort');
|
|
fwrite(fid, HDR.range_gain_db, 'float');
|
|
fwrite(fid, HDR.variable, 'char');
|
|
|
|
fseek(fid, HDR.data_offset, 'bof');
|
|
data = data + 2^15;
|
|
fwrite(fid, data, 'ushort');
|
|
fclose(fid);
|
|
|
|
|
|
% =========================================================================
|
|
% HD / DT1, Sensors & Software Inc. =======================================
|
|
|
|
% HD is the header file.
|
|
% In this file all the important information such as number of samples,
|
|
% traces, stacks, etc. can be found.
|
|
|
|
% DT1 is the data file.
|
|
% This file is written in a 16 bit binary form and contains as many records
|
|
% as there are traces. Each record consists of a header and a data section.
|
|
% This means that in this file there are also stored information such as
|
|
% the number of samples, traces, etc.
|
|
|
|
elseif gpr_format == 3
|
|
%Header structure of HD
|
|
HDR.fname = HDR.fname; % File name
|
|
HDR.file_tag = 1234; % File tag = 1234
|
|
HDR.system = HDR.antenna; % The system the data collected with
|
|
|
|
date_time = clock;
|
|
HDR.date = ([num2str(date_time(1)), '-' ...
|
|
num2str(date_time(2)), '-' ...
|
|
num2str(date_time(3))]); % Date
|
|
|
|
HDR.num_trac = HDR.num_trac; % Number of traces
|
|
HDR.num_samp = HDR.num_samp; % Number of samples
|
|
HDR.time_zero_point = 0; % Time zero point
|
|
HDR.time_window = HDR.time_window; % Total time window (ns)
|
|
HDR.start_position = 0; % Start position (m)
|
|
HDR.final_position = (HDR.num_trac - 1) * HDR.trac_int; % Stop position (m)
|
|
HDR.trac_int = HDR.trac_int; % Trace interval (m)
|
|
HDR.pos_units = 'm'; % Position units
|
|
HDR.nominal_freq = HDR.centre_freq; % Nominal freq. / Centre freq. (MHz)
|
|
HDR.ant_sep = HDR.ant_sep; % Antenna seperation / Tx-Rx distance (m)
|
|
HDR.pulser_voltage = 0; % Pulser voltage (V)
|
|
HDR.stacks = 1; % Number of stacks
|
|
HDR.survey_mode = 'Reflection'; % Survey mode
|
|
% HDR.odometer = 0; % Odometer Cal (t/m)
|
|
% HDR.stacking_type = 'F1'; % Stacking type
|
|
% HDR.dvl_serial = '0000-0000-0000'; % DVL serial
|
|
% HDR.console_serial = '000000000000'; % Console serial
|
|
% HDR.tx_serial = '0000-0000-0000'; % Transmitter serial
|
|
% HDR.rx_serial = '0000-0000-0000'; % Receiver Serial
|
|
|
|
% Header structure of DT1
|
|
HDR.num_each_trac = 1 : 1 : HDR.num_trac; % Number of each trace 1, 2, 3, ... num_trac
|
|
HDR.position = 0 : HDR.trac_int : ...
|
|
(HDR.num_trac - 1) * HDR.trac_int; % Position of each trace (m)
|
|
HDR.num_samp_each_trac = zeros(1, HDR.num_trac) + HDR.num_samp; % Number of samples of each trace
|
|
HDR.elevation = zeros(1, HDR.num_trac); % Elevation / topography of each trace
|
|
HDR.not_used1 = zeros(1, HDR.num_trac); % Not used
|
|
HDR.bytes = zeros(1, HDR.num_trac) + 2; % Always 2 for Rev 3 firmware
|
|
HDR.time_window_each_trac = zeros(1, HDR.num_trac) + HDR.time_window; % Time window of each trace (ns)
|
|
HDR.stacks_each_trac = ones(1, HDR.num_trac); % Number of stacks each trace
|
|
HDR.rsv_gps_x = zeros(1, HDR.num_trac); % Reserved for GPS X position (double*8 number)
|
|
HDR.rsv_gps_y = zeros(1, HDR.num_trac); % Reserved for GPS Y position (double*8 number)
|
|
HDR.rsv_gps_z = zeros(1, HDR.num_trac); % Reserved for GPS Z position (double*8 number)
|
|
HDR.rsv_rx_x = zeros(1, HDR.num_trac); % Reserved for receiver x position
|
|
HDR.rsv_rx_y = zeros(1, HDR.num_trac); % Reserved for receiver y position
|
|
HDR.rsv_rx_z = zeros(1, HDR.num_trac); % Reserved for receiver z position
|
|
HDR.rsv_tx_x = zeros(1, HDR.num_trac); % Reserved for transmitter x position
|
|
HDR.rsv_tx_y = zeros(1, HDR.num_trac); % Reserved for transmitter y position
|
|
HDR.rsv_tx_z = zeros(1, HDR.num_trac); % Reserved for transmitter z position
|
|
HDR.time_zero = zeros(1, HDR.num_trac); % Time zero adjustment where: point(x) = point(x + adjustment)
|
|
HDR.zero_flag = zeros(1, HDR.num_trac); % 0 = data ok, 1 = zero data
|
|
HDR.not_used2 = zeros(1, HDR.num_trac); % Not used 2
|
|
HDR.time = zeros(1, HDR.num_trac); % Time of day data collected in seconds past midnight
|
|
HDR.comment_flag = zeros(1, HDR.num_trac); % Comment flag
|
|
HDR.comment = zeros(1, 28); % Comment
|
|
|
|
% HD file
|
|
fid = fopen([HDR.fname '.hd'], 'w');
|
|
fprintf(fid, '%i\r\n', HDR.file_tag);
|
|
fprintf(fid, 'Data Collected with %s\r\n', HDR.system);
|
|
fprintf(fid, '%s\r\n', HDR.date);
|
|
fprintf(fid, 'NUMBER OF TRACES = %i\r\n', HDR.num_trac);
|
|
fprintf(fid, 'NUMBER OF PTS/TRC = %i\r\n', HDR.num_samp);
|
|
fprintf(fid, 'TIMEZERO AT POINT = %i\r\n', HDR.time_zero_point);
|
|
fprintf(fid, 'TOTAL TIME WINDOW = %0.6f\r\n', HDR.time_window);
|
|
fprintf(fid, 'STARTING POSITION = %0.6f\r\n', HDR.start_position);
|
|
fprintf(fid, 'FINAL POSITION = %0.6f\r\n', HDR.final_position);
|
|
fprintf(fid, 'STEP SIZE USED = %0.6f\r\n', HDR.trac_int);
|
|
fprintf(fid, 'POSITION UNITS = %s\r\n', HDR.pos_units);
|
|
fprintf(fid, 'NOMINAL FREQUENCY = %0.6f\r\n', HDR.nominal_freq);
|
|
fprintf(fid, 'ANTENNA SEPARATION = %0.6f\r\n', HDR.ant_sep);
|
|
fprintf(fid, 'PULSER VOLTAGE (V) = %0.6f\r\n', HDR.pulser_voltage);
|
|
fprintf(fid, 'NUMBER OF STACKS = %i\r\n', HDR.stacks);
|
|
fprintf(fid, 'SURVEY MODE = %s\r\n', HDR.survey_mode);
|
|
% fprintf(fid, 'ODOMETER CAL (t/m) = %0.6f\r\n', HDR.odometer);
|
|
% fprintf(fid, 'STACKING TYPE = %s\r\n', HDR.stacking_type);
|
|
% fprintf(fid, 'DVL Serial# = %s\r\n', HDR.dvl_serial);
|
|
% fprintf(fid, 'Console Serial# = %s\r\n', HDR.console_serial);
|
|
% fprintf(fid, 'Transmitter Serial#= %s\r\n', HDR.tx_serial);
|
|
% fprintf(fid, 'Receiver Serial# = %s\r\n', HDR.rx_serial);
|
|
fclose(fid);
|
|
|
|
% DT1 file
|
|
fid = fopen([HDR.fname '.dt1'], 'w');
|
|
for i = 1 : HDR.num_trac
|
|
fwrite(fid, HDR.num_each_trac(i), 'real*4');
|
|
fwrite(fid, HDR.position(i), 'real*4');
|
|
fwrite(fid, HDR.num_samp_each_trac(i), 'real*4');
|
|
fwrite(fid, HDR.elevation(i), 'real*4');
|
|
fwrite(fid, HDR.not_used1(i), 'real*4');
|
|
fwrite(fid, HDR.bytes(i), 'real*4');
|
|
fwrite(fid, HDR.time_window_each_trac(i), 'real*4');
|
|
fwrite(fid, HDR.stacks_each_trac(i), 'real*4');
|
|
fwrite(fid, HDR.rsv_gps_x(i), 'double');
|
|
fwrite(fid, HDR.rsv_gps_y(i), 'double');
|
|
fwrite(fid, HDR.rsv_gps_z(i), 'double');
|
|
fwrite(fid, HDR.rsv_rx_x(i), 'real*4');
|
|
fwrite(fid, HDR.rsv_rx_y(i), 'real*4');
|
|
fwrite(fid, HDR.rsv_rx_z(i), 'real*4');
|
|
fwrite(fid, HDR.rsv_tx_x(i), 'real*4');
|
|
fwrite(fid, HDR.rsv_tx_y(i), 'real*4');
|
|
fwrite(fid, HDR.rsv_tx_z(i), 'real*4');
|
|
fwrite(fid, HDR.time_zero(i), 'real*4');
|
|
fwrite(fid, HDR.zero_flag(i), 'real*4');
|
|
fwrite(fid, HDR.not_used2(i), 'real*4');
|
|
fwrite(fid, HDR.time(i), 'real*4');
|
|
fwrite(fid, HDR.comment_flag(i), 'real*4');
|
|
fwrite(fid, HDR.comment, 'char*1');
|
|
|
|
fwrite(fid, data(:, i), 'short');
|
|
if mod(i, 100) == 0
|
|
waitbar(i / HDR.num_trac, wb, sprintf('Exporting... %.f%%', ...
|
|
i / HDR.num_trac * 100))
|
|
end
|
|
end
|
|
fclose(fid);
|
|
|
|
|
|
% =========================================================================
|
|
% IPRH / IPRB, Impulse Radar ==============================================
|
|
|
|
% IPRH is the header file.
|
|
% In this file is all the important information such as the number of
|
|
% samples, traces, measurement intervals can be found.
|
|
|
|
% IPRB is the data file.
|
|
% This file contains only the data (amplitude values) in a 16 or 32 bit
|
|
% binary form. Since I have rescaled gprMax output data into a 16bit scale,
|
|
% this file will also be 16bit.
|
|
|
|
elseif gpr_format == 4
|
|
% Header structure
|
|
HDR.fname = HDR.fname; % File name
|
|
HDR.hdr_version = 20; % Header version
|
|
HDR.data_format = 16; % Data format 16 or 32 bit
|
|
|
|
date_time = clock;
|
|
HDR.date = ([num2str(date_time(1)), '-' ...
|
|
num2str(date_time(2)), '-' ...
|
|
num2str(date_time(3))]);% Date
|
|
|
|
HDR.start_time = '00:00:00'; % Measurement start time
|
|
HDR.stop_time = '00:00:00'; % Measurement end time
|
|
HDR.antenna = [num2str(HDR.centre_freq) ' MHz']; % Antenna frequency (MHz)
|
|
HDR.ant_sep = HDR.ant_sep; % Antenna seperation / Tx-Rx distance (m)
|
|
HDR.num_samp = HDR.num_samp; % Number of samples
|
|
HDR.signal_pos = 0; % Signal position
|
|
HDR.clipped_samps = 0; % Clipped samples
|
|
HDR.runs = 0; % Number of runs
|
|
HDR.stacks = 1; % Maximum number of stacks
|
|
HDR.auto_stacks = 1; % Autostacks (1 = On)
|
|
HDR.samp_freq = HDR.samp_freq; % Sampling frequency (MHz)
|
|
HDR.time_window = HDR.time_window; % Total time window (ns)
|
|
HDR.num_trac = HDR.num_trac; % Number of traces
|
|
HDR.trig_source = 'wheel'; % Trig source (wheel or time)
|
|
HDR.trac_int_sec = 0; % Trace interval if trig source is time (sec)
|
|
HDR.trac_int_met = HDR.trac_int; % Trace interval if trig source is wheel (m)
|
|
HDR.user_trac_int = HDR.trac_int; % User defined trace interval if trig source is wheel (m)
|
|
HDR.stop_pos = HDR.num_trac * HDR.trac_int; % Stop position (meters or seconds) -> num_trac * trac_int
|
|
HDR.wheel_name = 'Cart'; % Wheel name
|
|
HDR.wheel_calibration = 0; % Wheel calibration
|
|
HDR.zero_lvl = 0; % Zero level
|
|
HDR.vel = 100; % The soil velocity (Selected in field m/usec). 100 is a random number
|
|
HDR.preprocessing = 'Unknown Preprocessing'; % Not in use
|
|
HDR.comment = '----'; % Not in use
|
|
HDR.antenna_FW = '----'; % Receiver firmware version
|
|
HDR.antenna_HW = '----'; % Not in use
|
|
HDR.antenna_FPGA = '----'; % Receiver FPGA version
|
|
HDR.antenna_serial = '----'; % Receiver serial number
|
|
HDR.software_version = '----'; % Software version
|
|
HDR.positioning = 0; % Positioning: (0 = no, 1 = TS, 2 = GPS)
|
|
HDR.num_channel = 1; % Number of channels
|
|
HDR.channel_config = 1; % This channel configuration
|
|
HDR.ch_x_offset = 0; % Channel position relative to ext.positioning
|
|
HDR.ch_y_offset = 0; % Channel position relative to ext.positioning
|
|
HDR.meas_direction = 1; % Meas. direction forward or backward
|
|
HDR.relative_direction = 0; % Direction to RL start(clockwise 360)
|
|
HDR.relative_distance = 0; % Distance from RL start to cross section
|
|
HDR.relative_start = 0; % DIstance from profile start to cross section
|
|
|
|
% IPRH file
|
|
fid = fopen([HDR.fname '.iprh'], 'w');
|
|
fprintf(fid, 'HEADER VERSION: %i\r\n', HDR.hdr_version);
|
|
fprintf(fid, 'DATA VERSION: %i\r\n', HDR.data_format);
|
|
fprintf(fid, 'DATE: %s\r\n', HDR.date);
|
|
fprintf(fid, 'START TIME: %s\r\n', HDR.start_time);
|
|
fprintf(fid, 'STOP TIME: %s\r\n', HDR.stop_time);
|
|
fprintf(fid, 'ANTENNA: %s\r\n', HDR.antenna);
|
|
fprintf(fid, 'ANTENNA SEPARATION: %0.6f\r\n', HDR.ant_sep);
|
|
fprintf(fid, 'SAMPLES: %i\r\n', HDR.num_samp);
|
|
fprintf(fid, 'SIGNAL POSITION: %0.6f\r\n', HDR.signal_pos);
|
|
fprintf(fid, 'CLIPPED SAMPLES: %i\r\n', HDR.clipped_samps);
|
|
fprintf(fid, 'RUNS: %i\r\n', HDR.runs);
|
|
fprintf(fid, 'MAX STACKS: %i\r\n', HDR.stacks);
|
|
fprintf(fid, 'AUTOSTACKS: %i\r\n', HDR.auto_stacks);
|
|
fprintf(fid, 'FREQUENCY: %0.6f\r\n', HDR.samp_freq);
|
|
fprintf(fid, 'TIMEWINDOW: %0.6f\r\n', HDR.time_window);
|
|
fprintf(fid, 'LAST TRACE: %i\r\n', HDR.num_trac);
|
|
fprintf(fid, 'TRIG SOURCE: %s\r\n', HDR.trig_source);
|
|
fprintf(fid, 'TIME INTERVAL: %0.6f\r\n', HDR.trac_int_sec);
|
|
fprintf(fid, 'DISTANCE INTERVAL: %0.6f\r\n', HDR.trac_int_met);
|
|
fprintf(fid, 'USER DISTANCE INTERVAL: %0.6f\r\n', HDR.user_trac_int);
|
|
fprintf(fid, 'STOP POSITION: %0.6f\r\n', HDR.stop_pos);
|
|
fprintf(fid, 'WHEEL NAME: %s\r\n', HDR.wheel_name);
|
|
fprintf(fid, 'WHEEL CALIBRATION: %0.6f\r\n', HDR.wheel_calibration);
|
|
fprintf(fid, 'ZERO LEVEL: %i\r\n', HDR.zero_lvl);
|
|
fprintf(fid, 'SOIL VELOCITY: %i\r\n', HDR.vel);
|
|
fprintf(fid, 'PREPROCESSING: %s\r\n', HDR.preprocessing);
|
|
fprintf(fid, 'OPERATOR COMMENT: %s\r\n', HDR.comment);
|
|
fprintf(fid, 'ANTENNA F/W: %s\r\n', HDR.antenna_FW);
|
|
fprintf(fid, 'ANTENNA H/W: %s\r\n', HDR.antenna_HW);
|
|
fprintf(fid, 'ANTENNA FPGA: %s\r\n', HDR.antenna_FPGA);
|
|
fprintf(fid, 'ANTENNA SERIAL: %s\r\n', HDR.antenna_serial);
|
|
fprintf(fid, 'SOFTWARE VERSION: %s\r\n', HDR.software_version);
|
|
fprintf(fid, 'POSITIONING: %i\r\n', HDR.positioning);
|
|
fprintf(fid, 'CHANNELS: %i\r\n', HDR.num_channel);
|
|
fprintf(fid, 'CHANNEL CONFIGURATION: %i\r\n', HDR.channel_config);
|
|
fprintf(fid, 'CH_X_OFFSET: %0.6f\r\n', HDR.ch_x_offset);
|
|
fprintf(fid, 'CH_Y_OFFSET: %0.6f\r\n', HDR.ch_y_offset);
|
|
fprintf(fid, 'MEASUREMENT DIRECTION: %i\r\n', HDR.meas_direction);
|
|
fprintf(fid, 'RELATIVE DIRECTION: %i\r\n', HDR.relative_direction);
|
|
fprintf(fid, 'RELATIVE DISTANCE: %0.6f\r\n', HDR.relative_distance);
|
|
fprintf(fid, 'RELATIVE START: %0.6f\r\n', HDR.relative_start);
|
|
fclose(fid);
|
|
|
|
% IPRB file
|
|
fid = fopen([HDR.fname '.iprb'], 'w');
|
|
fwrite(fid, data, 'short');
|
|
fclose(fid);
|
|
end
|
|
waitbar(1, wb, 'Done!!!');
|
|
pause(1);
|
|
close(wb);
|
|
|
|
|
|
|