文件
gprMax/gprMax/fractals.py
2021-12-13 16:01:31 +00:00

264 行
10 KiB
Python

# Copyright (C) 2015-2021: The University of Edinburgh
# Authors: Craig Warren and Antonis Giannopoulos
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
from scipy import fftpack
from gprMax.constants import floattype
from gprMax.constants import complextype
from gprMax.fractals_generate_ext import generate_fractal2D
from gprMax.fractals_generate_ext import generate_fractal3D
from gprMax.utilities import round_value
np.seterr(divide='raise')
class FractalSurface(object):
"""Fractal surfaces."""
surfaceIDs = ['xminus', 'xplus', 'yminus', 'yplus', 'zminus', 'zplus']
def __init__(self, xs, xf, ys, yf, zs, zf, dimension):
"""
Args:
xs, xf, ys, yf, zs, zf (float): Extent of the fractal surface (one pair of
coordinates must be equal to correctly define a surface).
dimension (float): Fractal dimension that controls the fractal distribution.
"""
self.ID = None
self.surfaceID = None
self.xs = xs
self.xf = xf
self.ys = ys
self.yf = yf
self.zs = zs
self.zf = zf
self.nx = xf - xs
self.ny = yf - ys
self.nz = zf - zs
self.seed = None
self.dimension = dimension
# Constant related to fractal dimension from: http://dx.doi.org/10.1017/CBO9781139174695
self.b = -(2 * self.dimension - 7) / 2
self.weighting = np.array([1, 1], dtype=np.float64)
self.fractalrange = (0, 0)
self.filldepth = 0
self.grass = []
def generate_fractal_surface(self, G):
"""Generate a 2D array with a fractal distribution.
Args:
G (class): Grid class instance - holds essential parameters describing the model.
"""
if self.xs == self.xf:
surfacedims = (self.ny, self.nz)
elif self.ys == self.yf:
surfacedims = (self.nx, self.nz)
elif self.zs == self.zf:
surfacedims = (self.nx, self.ny)
self.fractalsurface = np.zeros(surfacedims, dtype=complextype)
# Positional vector at centre of array, scaled by weighting
v1 = np.array([self.weighting[0] * (surfacedims[0]) / 2, self.weighting[1] * (surfacedims[1]) / 2])
# 2D array of random numbers to be convolved with the fractal function
rng = np.random.default_rng(seed=self.seed)
A = rng.standard_normal(size=(surfacedims[0], surfacedims[1]))
# 2D FFT
A = fftpack.fftn(A)
# Shift the zero frequency component to the centre of the array
A = fftpack.fftshift(A)
# Generate fractal
generate_fractal2D(surfacedims[0], surfacedims[1], G.nthreads, self.b, self.weighting, v1, A, self.fractalsurface)
# Shift the zero frequency component to start of the array
self.fractalsurface = fftpack.ifftshift(self.fractalsurface)
# Take the real part (numerical errors can give rise to an imaginary part) of the IFFT
self.fractalsurface = np.real(fftpack.ifftn(self.fractalsurface))
# Scale the fractal volume according to requested range
fractalmin = np.amin(self.fractalsurface)
fractalmax = np.amax(self.fractalsurface)
fractalrange = fractalmax - fractalmin
self.fractalsurface = self.fractalsurface * ((self.fractalrange[1] - self.fractalrange[0]) / fractalrange) \
+ self.fractalrange[0] - ((self.fractalrange[1] - self.fractalrange[0]) / fractalrange) * fractalmin
class FractalVolume(object):
"""Fractal volumes."""
def __init__(self, xs, xf, ys, yf, zs, zf, dimension):
"""
Args:
xs, xf, ys, yf, zs, zf (float): Extent of the fractal volume.
dimension (float): Fractal dimension that controls the fractal distribution.
"""
self.ID = None
self.operatingonID = None
self.xs = xs
self.xf = xf
self.ys = ys
self.yf = yf
self.zs = zs
self.zf = zf
self.nx = xf - xs
self.ny = yf - ys
self.nz = zf - zs
self.averaging = False
self.seed = None
self.dimension = dimension
# Constant related to fractal dimension from: http://dx.doi.org/10.1017/CBO9781139174695
self.b = -(2 * self.dimension - 7) / 2
self.weighting = np.array([1, 1, 1], dtype=np.float64)
self.nbins = 0
self.fractalsurfaces = []
def generate_fractal_volume(self, G):
"""Generate a 3D volume with a fractal distribution.
Args:
G (class): Grid class instance - holds essential parameters describing the model.
"""
# Scale filter according to size of fractal volume
if self.nx == 1:
filterscaling = np.amin(np.array([self.ny, self.nz])) / np.array([self.ny, self.nz])
filterscaling = np.insert(filterscaling, 0, 1)
elif self.ny == 1:
filterscaling = np.amin(np.array([self.nx, self.nz])) / np.array([self.nx, self.nz])
filterscaling = np.insert(filterscaling, 1, 1)
elif self.nz == 1:
filterscaling = np.amin(np.array([self.nx, self.ny])) / np.array([self.nx, self.ny])
filterscaling = np.insert(filterscaling, 2, 1)
else:
filterscaling = np.amin(np.array([self.nx, self.ny, self.nz])) / np.array([self.nx, self.ny, self.nz])
# Adjust weighting to account for filter scaling
self.weighting = np.multiply(self.weighting, filterscaling)
self.fractalvolume = np.zeros((self.nx, self.ny, self.nz), dtype=complextype)
# Positional vector at centre of array, scaled by weighting
v1 = np.array([self.weighting[0] * self.nx / 2, self.weighting[1] * self.ny / 2, self.weighting[2] * self.nz / 2])
# 3D array of random numbers to be convolved with the fractal function
rng = np.random.default_rng(seed=self.seed)
A = rng.standard_normal(size=(self.nx, self.ny, self.nz))
# 3D FFT
A = fftpack.fftn(A)
# Shift the zero frequency component to the centre of the array
A = fftpack.fftshift(A)
# Generate fractal
generate_fractal3D(self.nx, self.ny, self.nz, G.nthreads, self.b, self.weighting, v1, A, self.fractalvolume)
# Shift the zero frequency component to the start of the array
self.fractalvolume = fftpack.ifftshift(self.fractalvolume)
# Take the real part (numerical errors can give rise to an imaginary part) of the IFFT
self.fractalvolume = np.real(fftpack.ifftn(self.fractalvolume))
# Bin fractal values
bins = np.linspace(np.amin(self.fractalvolume), np.amax(self.fractalvolume), self.nbins)
for j in range(self.ny):
for k in range(self.nz):
self.fractalvolume[:, j, k] = np.digitize(self.fractalvolume[:, j, k], bins, right=True)
def generate_volume_mask(self):
"""
Generate a 3D volume to use as a mask for adding rough surfaces, water and grass/roots.
Zero signifies the mask is not set, one signifies the mask is set."""
self.mask = np.zeros((self.nx, self.ny, self.nz), dtype=np.int8)
maskxs = self.originalxs - self.xs
maskxf = (self.originalxf - self.originalxs) + maskxs
maskys = self.originalys - self.ys
maskyf = (self.originalyf - self.originalys) + maskys
maskzs = self.originalzs - self.zs
maskzf = (self.originalzf - self.originalzs) + maskzs
self.mask[maskxs:maskxf, maskys:maskyf, maskzs:maskzf] = 1
class Grass(object):
"""Geometry information for blades of grass."""
def __init__(self, numblades):
"""
Args:
numblades (int): Number of blades of grass.
"""
self.numblades = numblades
self.geometryparams = np.zeros((self.numblades, 6), dtype=floattype)
self.seed = None
# Randomly defined parameters that will be used to calculate geometry
self.R1 = np.random.RandomState(self.seed)
self.R2 = np.random.RandomState(self.seed)
self.R3 = np.random.RandomState(self.seed)
self.R4 = np.random.RandomState(self.seed)
self.R5 = np.random.RandomState(self.seed)
self.R6 = np.random.RandomState(self.seed)
for i in range(self.numblades):
self.geometryparams[i, 0] = 10 + 20 * self.R1.random_sample()
self.geometryparams[i, 1] = 10 + 20 * self.R2.random_sample()
self.geometryparams[i, 2] = self.R3.choice([-1, 1])
self.geometryparams[i, 3] = self.R4.choice([-1, 1])
def calculate_blade_geometry(self, blade, height):
"""Calculates the x and y coordinates for a given height of grass blade.
Args:
blade (int): Numeric ID of grass blade.
height (float): Height of grass blade.
Returns:
x, y (float): x and y coordinates of grass blade.
"""
x = self.geometryparams[blade, 2] * (height / self.geometryparams[blade, 0]) * (height / self.geometryparams[blade, 0])
y = self.geometryparams[blade, 3] * (height / self.geometryparams[blade, 1]) * (height / self.geometryparams[blade, 1])
x = round_value(x)
y = round_value(y)
return x, y
def calculate_root_geometry(self, root, depth):
"""Calculates the x and y coordinates for a given depth of grass root.
Args:
root (int): Numeric ID of grass root.
depth (float): Depth of grass root.
Returns:
x, y (float): x and y coordinates of grass root.
"""
self.geometryparams[root, 4] += -1 + 2 * self.R5.random_sample()
self.geometryparams[root, 5] += -1 + 2 * self.R6.random_sample()
x = round(self.geometryparams[root, 4])
y = round(self.geometryparams[root, 5])
return x, y