你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-05 20:16:52 +08:00
109 行
5.0 KiB
Python
109 行
5.0 KiB
Python
import itertools
|
|
from operator import add
|
|
import os
|
|
import sys
|
|
|
|
from colorama import init, Fore, Style
|
|
init()
|
|
import h5py
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
# Create/setup plot figure
|
|
#colors = ['#E60D30', '#5CB7C6', '#A21797', '#A3B347'] # Plot colours from http://tools.medialab.sciences-po.fr/iwanthue/index.php
|
|
#colorIDs = ["#62a85b", "#9967c7", "#b3943f", "#6095cd", "#cb5c42", "#c95889"]
|
|
colorIDs = ["#79c72e", "#5774ff", "#ff7c2c", "#4b4e80", "#d7004e", "#007545", "#ff83ec"]
|
|
#colorIDs = ["#ba0044", "#b2d334", "#470055", "#185300", "#ff96b1", "#3e2700", "#0162a9", "#fdb786"]
|
|
colors = itertools.cycle(colorIDs)
|
|
# for i in range(2):
|
|
# next(colors)
|
|
lines = itertools.cycle(('--', ':', '-.', '-'))
|
|
markers = ['o', 'd', '^', 's', '*']
|
|
|
|
basepath = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'pml_3D_pec_plate')
|
|
path = 'rxs/rx1/'
|
|
refmodel = 'pml_3D_pec_plate_ref'
|
|
PMLIDs = ['CFS-PML', 'HORIPML-1', 'HORIPML-2', 'MRIPML-1', 'MRIPML-2']
|
|
maxerrors = []
|
|
testmodels = ['pml_3D_pec_plate_' + s for s in PMLIDs]
|
|
|
|
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Error [dB]'), figsize=(20, 10), facecolor='w', edgecolor='w')
|
|
|
|
for x, model in enumerate(testmodels):
|
|
# Get output for model and reference files
|
|
fileref = h5py.File(os.path.join(basepath, refmodel + '.out'), 'r')
|
|
filetest = h5py.File(os.path.join(basepath, model + '.out'), 'r')
|
|
|
|
# Get available field output component names
|
|
outputsref = list(fileref[path].keys())
|
|
outputstest = list(filetest[path].keys())
|
|
if outputsref != outputstest:
|
|
raise GeneralError('Field output components do not match reference solution')
|
|
|
|
# Check that type of float used to store fields matches
|
|
if filetest[path + outputstest[0]].dtype != fileref[path + outputsref[0]].dtype:
|
|
print(Fore.RED + 'WARNING: Type of floating point number in test model ({}) does not match type in reference solution ({})\n'.format(filetest[path + outputstest[0]].dtype, fileref[path + outputsref[0]].dtype) + Style.RESET_ALL)
|
|
floattyperef = fileref[path + outputsref[0]].dtype
|
|
floattypetest = filetest[path + outputstest[0]].dtype
|
|
# print('Data type: {}'.format(floattypetest))
|
|
|
|
# Arrays for storing time
|
|
# timeref = np.zeros((fileref.attrs['Iterations']), dtype=floattyperef)
|
|
# timeref = np.linspace(0, (fileref.attrs['Iterations'] - 1) * fileref.attrs['dt'], num=fileref.attrs['Iterations']) / 1e-9
|
|
# timetest = np.zeros((filetest.attrs['Iterations']), dtype=floattypetest)
|
|
# timetest = np.linspace(0, (filetest.attrs['Iterations'] - 1) * filetest.attrs['dt'], num=filetest.attrs['Iterations']) / 1e-9
|
|
timeref = np.zeros((fileref.attrs['Iterations']), dtype=floattyperef)
|
|
timeref = np.linspace(0, (fileref.attrs['Iterations'] - 1), num=fileref.attrs['Iterations'])
|
|
timetest = np.zeros((filetest.attrs['Iterations']), dtype=floattypetest)
|
|
timetest = np.linspace(0, (filetest.attrs['Iterations'] - 1), num=filetest.attrs['Iterations'])
|
|
|
|
# Arrays for storing field data
|
|
dataref = np.zeros((fileref.attrs['Iterations'], len(outputsref)), dtype=floattyperef)
|
|
datatest = np.zeros((filetest.attrs['Iterations'], len(outputstest)), dtype=floattypetest)
|
|
for ID, name in enumerate(outputsref):
|
|
dataref[:, ID] = fileref[path + str(name)][:]
|
|
datatest[:, ID] = filetest[path + str(name)][:]
|
|
if np.any(np.isnan(datatest[:, ID])):
|
|
raise ValueError('Test data contains NaNs')
|
|
|
|
fileref.close()
|
|
filetest.close()
|
|
|
|
# Diffs
|
|
datadiffs = np.zeros(datatest.shape, dtype=np.float64)
|
|
for i in range(len(outputstest)):
|
|
max = np.amax(np.abs(dataref[:, i]))
|
|
datadiffs[:, i] = np.divide(np.abs(datatest[:, i] - dataref[:, i]), max, out=np.zeros_like(dataref[:, i]), where=max != 0) # Replace any division by zero with zero
|
|
|
|
# Calculate power (ignore warning from taking a log of any zero values)
|
|
with np.errstate(divide='ignore'):
|
|
datadiffs[:, i] = 20 * np.log10(datadiffs[:, i])
|
|
# Replace any NaNs or Infs from zero division
|
|
datadiffs[:, i][np.invert(np.isfinite(datadiffs[:, i]))] = 0
|
|
|
|
# Print maximum error value
|
|
start = 210
|
|
maxerrors.append(': {:.1f} [dB]'.format(np.amax(datadiffs[start::, 1])))
|
|
print('{}: Max. error {}'.format(model, maxerrors[x]))
|
|
|
|
# Plot diffs (select column to choose field component, 0-Ex, 1-Ey etc..)
|
|
ax.plot(timeref[start::], datadiffs[start::, 1], color=next(colors), lw=2, ls=next(lines), label=model)
|
|
ax.set_xticks(np.arange(0, 2200, step=100))
|
|
ax.set_xlim([0, 2100])
|
|
ax.set_yticks(np.arange(-160, 0, step=20))
|
|
ax.set_ylim([-160, -20])
|
|
ax.set_axisbelow(True)
|
|
ax.grid(color=(0.75,0.75,0.75), linestyle='dashed')
|
|
|
|
mylegend = list(map(add, PMLIDs, maxerrors))
|
|
legend = ax.legend(mylegend, loc=1, fontsize=14)
|
|
frame = legend.get_frame()
|
|
frame.set_edgecolor('white')
|
|
frame.set_alpha(0)
|
|
|
|
plt.show()
|
|
|
|
# Save a PDF/PNG of the figure
|
|
fig.savefig(basepath + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
|
#fig.savefig(savename + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|