文件
gprMax/tools/plot_antenna_params.py
2023-03-24 11:50:02 +00:00

425 行
19 KiB
Python

# Copyright (C) 2015-2023: The University of Edinburgh
# Authors: Craig Warren and Antonis Giannopoulos
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import argparse
import os
import sys
import h5py
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from gprMax.exceptions import CmdInputError
def calculate_antenna_params(filename, tltxnumber=1, tlrxnumber=None, rxnumber=None, rxcomponent=None):
"""Calculates antenna parameters - incident, reflected and total volatges and currents; s11, (s21) and input impedance.
Args:
filename (string): Filename (including path) of output file.
tltxnumber (int): Transmitter antenna - transmission line number
tlrxnumber (int): Receiver antenna - transmission line number
rxnumber (int): Receiver antenna - output number
rxcomponent (str): Receiver antenna - output electric field component
Returns:
antennaparams (dict): Antenna parameters.
"""
# Open output file and read some attributes
f = h5py.File(filename, 'r')
dxdydz = f.attrs['dx_dy_dz']
dt = f.attrs['dt']
iterations = f.attrs['Iterations']
# Calculate time array and frequency bin spacing
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
df = 1 / np.amax(time)
print('Time window: {:g} s ({} iterations)'.format(np.amax(time), iterations))
print('Time step: {:g} s'.format(dt))
print('Frequency bin spacing: {:g} Hz'.format(df))
# Read/calculate voltages and currents from transmitter antenna
tltxpath = '/tls/tl' + str(tltxnumber) + '/'
# Incident voltages/currents
Vinc = f[tltxpath + 'Vinc'][:]
Iinc = f[tltxpath + 'Iinc'][:]
# Total (incident + reflected) voltages/currents
Vtotal = f[tltxpath + 'Vtotal'][:]
Itotal = f[tltxpath + 'Itotal'][:]
# Reflected voltages/currents
Vref = Vtotal - Vinc
Iref = Itotal - Iinc
# If a receiver antenna is used (with a transmission line or receiver), get received voltage for s21
if tlrxnumber:
tlrxpath = '/tls/tl' + str(tlrxnumber) + '/'
Vrec = f[tlrxpath + 'Vtotal'][:]
elif rxnumber:
rxpath = '/rxs/rx' + str(rxnumber) + '/'
availableoutputs = list(f[rxpath].keys())
if rxcomponent not in availableoutputs:
raise CmdInputError('{} output requested, but the available output for receiver {} is {}'.format(rxcomponent, rxnumber, ', '.join(availableoutputs)))
rxpath += rxcomponent
# Received voltage
if rxcomponent == 'Ex':
Vrec = f[rxpath][:] * -1 * dxdydz[0]
elif rxcomponent == 'Ey':
Vrec = f[rxpath][:] * -1 * dxdydz[1]
elif rxcomponent == 'Ez':
Vrec = f[rxpath][:] * -1 * dxdydz[2]
f.close()
# Frequency bins
freqs = np.fft.fftfreq(Vinc.size, d=dt)
# Delay correction - current lags voltage, so delay voltage to match current timestep
delaycorrection = np.exp(1j * 2 * np.pi * freqs * (dt / 2))
# Calculate s11 and (optionally) s21
with np.errstate(divide='ignore'):
s11 = np.abs(np.fft.fft(Vref) / np.fft.fft(Vinc))
if tlrxnumber or rxnumber:
with np.errstate(divide='ignore'):
s21 = np.abs(np.fft.fft(Vrec) / np.fft.fft(Vinc))
# Calculate input impedance
with np.errstate(divide='ignore'):
zin = (np.fft.fft(Vtotal) * delaycorrection) / np.fft.fft(Itotal)
# Calculate input admittance
with np.errstate(divide='ignore'):
yin = np.fft.fft(Itotal) / (np.fft.fft(Vtotal) * delaycorrection)
# Convert to decibels (ignore warning from taking a log of any zero values)
with np.errstate(divide='ignore'):
Vincp = 20 * np.log10(np.abs((np.fft.fft(Vinc) * delaycorrection)))
Iincp = 20 * np.log10(np.abs(np.fft.fft(Iinc)))
Vrefp = 20 * np.log10(np.abs((np.fft.fft(Vref) * delaycorrection)))
Irefp = 20 * np.log10(np.abs(np.fft.fft(Iref)))
Vtotalp = 20 * np.log10(np.abs((np.fft.fft(Vtotal) * delaycorrection)))
Itotalp = 20 * np.log10(np.abs(np.fft.fft(Itotal)))
s11 = 20 * np.log10(s11)
# Replace any NaNs or Infs from zero division
Vincp[np.invert(np.isfinite(Vincp))] = 0
Iincp[np.invert(np.isfinite(Iincp))] = 0
Vrefp[np.invert(np.isfinite(Vrefp))] = 0
Irefp[np.invert(np.isfinite(Irefp))] = 0
Vtotalp[np.invert(np.isfinite(Vtotalp))] = 0
Itotalp[np.invert(np.isfinite(Itotalp))] = 0
s11[np.invert(np.isfinite(s11))] = 0
# Create dictionary of antenna parameters
antennaparams = {'time': time, 'freqs': freqs, 'Vinc': Vinc, 'Vincp': Vincp, 'Iinc': Iinc, 'Iincp': Iincp,
'Vref': Vref, 'Vrefp': Vrefp, 'Iref': Iref, 'Irefp': Irefp,
'Vtotal': Vtotal, 'Vtotalp': Vtotalp, 'Itotal': Itotal, 'Itotalp': Itotalp,
's11': s11, 'zin': zin, 'yin': yin}
if tlrxnumber or rxnumber:
with np.errstate(divide='ignore'): # Ignore warning from taking a log of any zero values
s21 = 20 * np.log10(s21)
s21[np.invert(np.isfinite(s21))] = 0
antennaparams['s21'] = s21
return antennaparams
def mpl_plot(filename, time, freqs, Vinc, Vincp, Iinc, Iincp, Vref, Vrefp, Iref, Irefp, Vtotal, Vtotalp, Itotal, Itotalp, s11, zin, yin, s21=None):
"""Plots antenna parameters - incident, reflected and total volatges and currents; s11, (s21) and input impedance.
Args:
filename (string): Filename (including path) of output file.
time (array): Simulation time.
freq (array): Frequencies for FFTs.
Vinc, Vincp, Iinc, Iincp (array): Time and frequency domain representations of incident voltage and current.
Vref, Vrefp, Iref, Irefp (array): Time and frequency domain representations of reflected voltage and current.
Vtotal, Vtotalp, Itotal, Itotalp (array): Time and frequency domain representations of total voltage and current.
s11, s21 (array): s11 and, optionally, s21 parameters.
zin, yin (array): Input impedance and input admittance parameters.
Returns:
plt (object): matplotlib plot object.
"""
# Set plotting range
pltrangemin = 1
# To a certain drop from maximum power
pltrangemax = np.where((np.amax(Vincp[1::]) - Vincp[1::]) > 60)[0][0] + 1
# To a maximum frequency
# pltrangemax = np.where(freqs > 6e9)[0][0]
pltrange = np.s_[pltrangemin:pltrangemax]
# Print some useful values from s11, and input impedance
s11minfreq = np.where(s11[pltrange] == np.amin(s11[pltrange]))[0][0]
print('s11 minimum: {:g} dB at {:g} Hz'.format(np.amin(s11[pltrange]), freqs[s11minfreq + pltrangemin]))
print('At {:g} Hz...'.format(freqs[s11minfreq + pltrangemin]))
print('Input impedance: {:.1f}{:+.1f}j Ohms'.format(np.abs(zin[s11minfreq + pltrangemin]), zin[s11minfreq + pltrangemin].imag))
# print('Input admittance (mag): {:g} S'.format(np.abs(yin[s11minfreq + pltrangemin])))
# print('Input admittance (phase): {:.1f} deg'.format(np.angle(yin[s11minfreq + pltrangemin], deg=True)))
# Figure 1
# Plot incident voltage
fig1, ax = plt.subplots(num='Transmitter transmission line parameters', figsize=(20, 12), facecolor='w', edgecolor='w')
gs1 = gridspec.GridSpec(4, 2, hspace=0.7)
ax = plt.subplot(gs1[0, 0])
ax.plot(time, Vinc, 'r', lw=2, label='Vinc')
ax.set_title('Incident voltage')
ax.set_xlabel('Time [s]')
ax.set_ylabel('Voltage [V]')
ax.set_xlim([0, np.amax(time)])
ax.grid(which='both', axis='both', linestyle='-.')
# Plot frequency spectra of incident voltage
ax = plt.subplot(gs1[0, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vincp[pltrange], '-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'r')
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
ax.plot(freqs[pltrange], Vincp[pltrange], 'r', lw=2)
ax.set_title('Incident voltage')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
ax.grid(which='both', axis='both', linestyle='-.')
# Plot incident current
ax = plt.subplot(gs1[1, 0])
ax.plot(time, Iinc, 'b', lw=2, label='Vinc')
ax.set_title('Incident current')
ax.set_xlabel('Time [s]')
ax.set_ylabel('Current [A]')
ax.set_xlim([0, np.amax(time)])
ax.grid(which='both', axis='both', linestyle='-.')
# Plot frequency spectra of incident current
ax = plt.subplot(gs1[1, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Iincp[pltrange], '-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'b')
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
ax.plot(freqs[pltrange], Iincp[pltrange], 'b', lw=2)
ax.set_title('Incident current')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
ax.grid(which='both', axis='both', linestyle='-.')
# Plot total voltage
ax = plt.subplot(gs1[2, 0])
ax.plot(time, Vtotal, 'r', lw=2, label='Vinc')
ax.set_title('Total (incident + reflected) voltage')
ax.set_xlabel('Time [s]')
ax.set_ylabel('Voltage [V]')
ax.set_xlim([0, np.amax(time)])
ax.grid(which='both', axis='both', linestyle='-.')
# Plot frequency spectra of total voltage
ax = plt.subplot(gs1[2, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vtotalp[pltrange], '-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'r')
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
ax.plot(freqs[pltrange], Vtotalp[pltrange], 'r', lw=2)
ax.set_title('Total (incident + reflected) voltage')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
ax.grid(which='both', axis='both', linestyle='-.')
# Plot total current
ax = plt.subplot(gs1[3, 0])
ax.plot(time, Itotal, 'b', lw=2, label='Vinc')
ax.set_title('Total (incident + reflected) current')
ax.set_xlabel('Time [s]')
ax.set_ylabel('Current [A]')
ax.set_xlim([0, np.amax(time)])
ax.grid(which='both', axis='both', linestyle='-.')
# Plot frequency spectra of total current
ax = plt.subplot(gs1[3, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Itotalp[pltrange], '-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'b')
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
ax.plot(freqs[pltrange], Itotalp[pltrange], 'b', lw=2)
ax.set_title('Total (incident + reflected) current')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
ax.grid(which='both', axis='both', linestyle='-.')
# Plot reflected (reflected) voltage
# ax = plt.subplot(gs1[4, 0])
# ax.plot(time, Vref, 'r', lw=2, label='Vref')
# ax.set_title('Reflected voltage')
# ax.set_xlabel('Time [s]')
# ax.set_ylabel('Voltage [V]')
# ax.set_xlim([0, np.amax(time)])
# ax.grid(which='both', axis='both', linestyle='-.')
# Plot frequency spectra of reflected voltage
# ax = plt.subplot(gs1[4, 1])
# markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vrefp[pltrange], '-.', use_line_collection=True)
# plt.setp(baseline, 'linewidth', 0)
# plt.setp(stemlines, 'color', 'r')
# plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
# ax.plot(freqs[pltrange], Vrefp[pltrange], 'r', lw=2)
# ax.set_title('Reflected voltage')
# ax.set_xlabel('Frequency [Hz]')
# ax.set_ylabel('Power [dB]')
# ax.grid(which='both', axis='both', linestyle='-.')
# Plot reflected (reflected) current
# ax = plt.subplot(gs1[5, 0])
# ax.plot(time, Iref, 'b', lw=2, label='Iref')
# ax.set_title('Reflected current')
# ax.set_xlabel('Time [s]')
# ax.set_ylabel('Current [A]')
# ax.set_xlim([0, np.amax(time)])
# ax.grid(which='both', axis='both', linestyle='-.')
# Plot frequency spectra of reflected current
# ax = plt.subplot(gs1[5, 1])
# markerline, stemlines, baseline = ax.stem(freqs[pltrange], Irefp[pltrange], '-.', use_line_collection=True)
# plt.setp(baseline, 'linewidth', 0)
# plt.setp(stemlines, 'color', 'b')
# plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
# ax.plot(freqs[pltrange], Irefp[pltrange], 'b', lw=2)
# ax.set_title('Reflected current')
# ax.set_xlabel('Frequency [Hz]')
# ax.set_ylabel('Power [dB]')
# ax.grid(which='both', axis='both', linestyle='-.')
# Figure 2
# Plot frequency spectra of s11
fig2, ax = plt.subplots(num='Antenna parameters', figsize=(20, 12), facecolor='w', edgecolor='w')
gs2 = gridspec.GridSpec(2, 2, hspace=0.3)
ax = plt.subplot(gs2[0, 0])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s11[pltrange], '-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
ax.plot(freqs[pltrange], s11[pltrange], 'g', lw=2)
ax.set_title('s11')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
# ax.set_xlim([0, 5e9])
# ax.set_ylim([-25, 0])
ax.grid(which='both', axis='both', linestyle='-.')
# Plot frequency spectra of s21
if s21 is not None:
ax = plt.subplot(gs2[0, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s21[pltrange], '-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
ax.plot(freqs[pltrange], s21[pltrange], 'g', lw=2)
ax.set_title('s21')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
# ax.set_xlim([0.88e9, 1.02e9])
# ax.set_ylim([-25, 50])
ax.grid(which='both', axis='both', linestyle='-.')
# Plot input resistance (real part of impedance)
ax = plt.subplot(gs2[1, 0])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].real, '-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
ax.plot(freqs[pltrange], zin[pltrange].real, 'g', lw=2)
ax.set_title('Input impedance (resistive)')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Resistance [Ohms]')
# ax.set_xlim([0.88e9, 1.02e9])
ax.set_ylim(bottom=0)
# ax.set_ylim([0, 300])
ax.grid(which='both', axis='both', linestyle='-.')
# Plot input reactance (imaginery part of impedance)
ax = plt.subplot(gs2[1, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].imag, '-.', use_line_collection=True)
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
ax.plot(freqs[pltrange], zin[pltrange].imag, 'g', lw=2)
ax.set_title('Input impedance (reactive)')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Reactance [Ohms]')
# ax.set_xlim([0.88e9, 1.02e9])
# ax.set_ylim([-300, 300])
ax.grid(which='both', axis='both', linestyle='-.')
# Plot input admittance (magnitude)
# ax = plt.subplot(gs2[2, 0])
# markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.abs(yin[pltrange]), '-.', use_line_collection=True)
# plt.setp(baseline, 'linewidth', 0)
# plt.setp(stemlines, 'color', 'g')
# plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
# ax.plot(freqs[pltrange], np.abs(yin[pltrange]), 'g', lw=2)
# ax.set_title('Input admittance (magnitude)')
# ax.set_xlabel('Frequency [Hz]')
# ax.set_ylabel('Admittance [Siemens]')
# ax.set_xlim([0.88e9, 1.02e9])
# ax.set_ylim([0, 0.035])
# ax.grid(which='both', axis='both', linestyle='-.')
# Plot input admittance (phase)
# ax = plt.subplot(gs2[2, 1])
# markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.angle(yin[pltrange], deg=True), '-.', use_line_collection=True)
# plt.setp(baseline, 'linewidth', 0)
# plt.setp(stemlines, 'color', 'g')
# plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
# ax.plot(freqs[pltrange], np.angle(yin[pltrange], deg=True), 'g', lw=2)
# ax.set_title('Input admittance (phase)')
# ax.set_xlabel('Frequency [Hz]')
# ax.set_ylabel('Phase [degrees]')
# ax.set_xlim([0.88e9, 1.02e9])
# ax.set_ylim([-40, 100])
# ax.grid(which='both', axis='both', linestyle='-.')
# Save a PDF/PNG of the figure
# fig1.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_tl_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
# fig2.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
# fig1.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_tl_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
# fig2.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_ant_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
return plt
if __name__ == "__main__":
# Parse command line arguments
parser = argparse.ArgumentParser(description='Plots antenna parameters (s11, s21 parameters and input impedance) from an output file containing a transmission line source.', usage='cd gprMax; python -m tools.plot_antenna_params outputfile')
parser.add_argument('outputfile', help='name of output file including path')
parser.add_argument('--tltx-num', default=1, type=int, help='transmitter antenna - transmission line number')
parser.add_argument('--tlrx-num', type=int, help='receiver antenna - transmission line number')
parser.add_argument('--rx-num', type=int, help='receiver antenna - output number')
parser.add_argument('--rx-component', type=str, help='receiver antenna - output electric field component', choices=['Ex', 'Ey', 'Ez'])
args = parser.parse_args()
antennaparams = calculate_antenna_params(args.outputfile, args.tltx_num, args.tlrx_num, args.rx_num, args.rx_component)
plthandle = mpl_plot(args.outputfile, **antennaparams)
plthandle.show()