你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-03 19:26:50 +08:00
585 行
26 KiB
Python
585 行
26 KiB
Python
# Copyright (C) 2015-2023: The University of Edinburgh
|
|
# Authors: Craig Warren and Antonis Giannopoulos
|
|
#
|
|
# This file is part of gprMax.
|
|
#
|
|
# gprMax is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# gprMax is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
"""gprMax.gprMax: provides entry point main()."""
|
|
|
|
import argparse
|
|
import datetime
|
|
import os
|
|
import platform
|
|
import sys
|
|
|
|
from enum import Enum
|
|
from io import StringIO
|
|
|
|
import h5py
|
|
import numpy as np
|
|
|
|
from gprMax._version import __version__, codename
|
|
from gprMax.constants import c
|
|
from gprMax.constants import e0
|
|
from gprMax.constants import m0
|
|
from gprMax.constants import z0
|
|
from gprMax.exceptions import GeneralError
|
|
from gprMax.model_build_run import run_model
|
|
from gprMax.utilities import detect_check_gpus
|
|
from gprMax.utilities import get_host_info
|
|
from gprMax.utilities import get_terminal_width
|
|
from gprMax.utilities import human_size
|
|
from gprMax.utilities import logo
|
|
from gprMax.utilities import open_path_file
|
|
from gprMax.utilities import timer
|
|
|
|
def main():
|
|
"""This is the main function for gprMax."""
|
|
|
|
# Parse command line arguments
|
|
parser = argparse.ArgumentParser(prog='gprMax', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
parser.add_argument('inputfile', help='path to, and name of inputfile or file object')
|
|
parser.add_argument('-n', default=1, type=int, help='number of times to run the input file, e.g. to create a B-scan')
|
|
parser.add_argument('-task', type=int, help='task identifier (model number) for job array on Open Grid Scheduler/Grid Engine (http://gridscheduler.sourceforge.net/index.html)')
|
|
parser.add_argument('-restart', type=int, help='model number to restart from, e.g. when creating B-scan')
|
|
parser.add_argument('-mpi', type=int, help='number of MPI tasks, i.e. master + workers')
|
|
parser.add_argument('-mpicomm', default=None, help=argparse.SUPPRESS)
|
|
parser.add_argument('--mpi-no-spawn', action='store_true', default=False, help='flag to use MPI without spawn mechanism')
|
|
parser.add_argument('--mpi-worker', action='store_true', default=False, help=argparse.SUPPRESS)
|
|
parser.add_argument('-gpu', type=int, action='append', nargs='*', help='flag to use Nvidia GPU or option to give list of device ID(s)')
|
|
parser.add_argument('-benchmark', action='store_true', default=False, help='flag to switch on benchmarking mode')
|
|
parser.add_argument('--geometry-only', action='store_true', default=False, help='flag to only build model and produce geometry file(s)')
|
|
parser.add_argument('--geometry-fixed', action='store_true', default=False, help='flag to not reprocess model geometry, e.g. for B-scans where the geometry is fixed')
|
|
parser.add_argument('--write-processed', action='store_true', default=False, help='flag to write an input file after any Python code and include commands in the original input file have been processed')
|
|
parser.add_argument('--opt-taguchi', action='store_true', default=False, help='flag to optimise parameters using the Taguchi optimisation method')
|
|
args = parser.parse_args()
|
|
|
|
run_main(args)
|
|
|
|
|
|
def api(
|
|
inputfile,
|
|
n=1,
|
|
task=None,
|
|
restart=None,
|
|
mpi=False,
|
|
mpi_no_spawn=False,
|
|
mpicomm=None,
|
|
gpu=None,
|
|
benchmark=False,
|
|
geometry_only=False,
|
|
geometry_fixed=False,
|
|
write_processed=False,
|
|
opt_taguchi=False
|
|
):
|
|
"""If installed as a module this is the entry point."""
|
|
|
|
class ImportArguments:
|
|
pass
|
|
|
|
args = ImportArguments()
|
|
|
|
args.inputfile = inputfile
|
|
args.n = n
|
|
args.task = task
|
|
args.restart = restart
|
|
args.mpi = mpi
|
|
args.mpi_no_spawn = mpi_no_spawn
|
|
args.mpicomm = mpicomm
|
|
args.gpu = gpu
|
|
args.benchmark = benchmark
|
|
args.geometry_only = geometry_only
|
|
args.geometry_fixed = geometry_fixed
|
|
args.write_processed = write_processed
|
|
args.opt_taguchi = opt_taguchi
|
|
|
|
run_main(args)
|
|
|
|
|
|
def run_main(args):
|
|
"""
|
|
Top-level function that controls what mode of simulation (standard/optimsation/benchmark etc...) is run.
|
|
|
|
Args:
|
|
args (dict): Namespace with input arguments from command line or api.
|
|
"""
|
|
|
|
# Print gprMax logo, version, and licencing/copyright information
|
|
logo(__version__ + ' (' + codename + ')')
|
|
|
|
with open_path_file(args.inputfile) as inputfile:
|
|
|
|
# Get information about host machine
|
|
hostinfo = get_host_info()
|
|
hyperthreading = ', {} cores with Hyper-Threading'.format(hostinfo['logicalcores']) if hostinfo['hyperthreading'] else ''
|
|
print('\nHost: {} | {} | {} x {} ({} cores{}) | {} RAM | {}'.format(hostinfo['hostname'],
|
|
hostinfo['machineID'], hostinfo['sockets'], hostinfo['cpuID'], hostinfo['physicalcores'],
|
|
hyperthreading, human_size(hostinfo['ram'], a_kilobyte_is_1024_bytes=True), hostinfo['osversion']))
|
|
|
|
# Get information/setup any Nvidia GPU(s)
|
|
if args.gpu is not None:
|
|
# Flatten a list of lists
|
|
if any(isinstance(element, list) for element in args.gpu):
|
|
args.gpu = [val for sublist in args.gpu for val in sublist]
|
|
gpus, allgpustext = detect_check_gpus(args.gpu)
|
|
print('GPU(s) detected: {}'.format(' | '.join(allgpustext)))
|
|
|
|
# If in MPI mode or benchmarking provide list of GPU objects, otherwise
|
|
# provide single GPU object
|
|
if args.mpi or args.mpi_no_spawn or args.benchmark:
|
|
args.gpu = gpus
|
|
else:
|
|
args.gpu = gpus[0]
|
|
|
|
# Create a separate namespace that users can access in any Python code blocks in the input file
|
|
usernamespace = {'c': c, 'e0': e0, 'm0': m0, 'z0': z0, 'number_model_runs': args.n, 'inputfile': os.path.abspath(inputfile.name)}
|
|
|
|
#######################################
|
|
# Process for benchmarking simulation #
|
|
#######################################
|
|
if args.benchmark:
|
|
if args.mpi or args.opt_taguchi or args.task or args.n > 1:
|
|
raise GeneralError('Benchmarking mode cannot be combined with MPI, job array, or Taguchi optimisation modes, or multiple model runs.')
|
|
run_benchmark_sim(args, inputfile, usernamespace)
|
|
|
|
####################################################
|
|
# Process for simulation with Taguchi optimisation #
|
|
####################################################
|
|
elif args.opt_taguchi:
|
|
if args.mpi_worker: # Special case for MPI spawned workers - they do not need to enter the Taguchi optimisation mode
|
|
run_mpi_sim(args, inputfile, usernamespace)
|
|
else:
|
|
from gprMax.optimisation_taguchi import run_opt_sim
|
|
run_opt_sim(args, inputfile, usernamespace)
|
|
|
|
################################################
|
|
# Process for standard simulation (CPU or GPU) #
|
|
################################################
|
|
else:
|
|
# Mixed mode MPI with OpenMP or CUDA - MPI task farm for models with each model parallelised with OpenMP (CPU) or CUDA (GPU)
|
|
if args.mpi:
|
|
if args.n == 1:
|
|
raise GeneralError('MPI is not beneficial when there is only one model to run')
|
|
if args.task:
|
|
raise GeneralError('MPI cannot be combined with job array mode')
|
|
run_mpi_sim(args, inputfile, usernamespace)
|
|
|
|
# Alternate MPI configuration that does not use MPI spawn mechanism
|
|
elif args.mpi_no_spawn:
|
|
if args.n == 1:
|
|
raise GeneralError('MPI is not beneficial when there is only one model to run')
|
|
if args.task:
|
|
raise GeneralError('MPI cannot be combined with job array mode')
|
|
run_mpi_no_spawn_sim(args, inputfile, usernamespace)
|
|
|
|
# Standard behaviour - models run serially with each model parallelised with OpenMP (CPU) or CUDA (GPU)
|
|
else:
|
|
if args.task and args.restart:
|
|
raise GeneralError('Job array and restart modes cannot be used together')
|
|
run_std_sim(args, inputfile, usernamespace)
|
|
|
|
|
|
def run_std_sim(args, inputfile, usernamespace, optparams=None):
|
|
"""
|
|
Run standard simulation - models are run one after another and each model
|
|
is parallelised using either OpenMP (CPU) or CUDA (GPU)
|
|
|
|
Args:
|
|
args (dict): Namespace with command line arguments
|
|
inputfile (object): File object for the input file.
|
|
usernamespace (dict): Namespace that can be accessed by user in any
|
|
Python code blocks in input file.
|
|
optparams (dict): Optional argument. For Taguchi optimisation it
|
|
provides the parameters to optimise and their values.
|
|
"""
|
|
|
|
# Set range for number of models to run
|
|
if args.task:
|
|
# Job array feeds args.n number of single tasks
|
|
modelstart = args.task
|
|
modelend = args.task + 1
|
|
elif args.restart:
|
|
modelstart = args.restart
|
|
modelend = modelstart + args.n
|
|
else:
|
|
modelstart = 1
|
|
modelend = modelstart + args.n
|
|
numbermodelruns = args.n
|
|
|
|
tsimstart = timer()
|
|
for currentmodelrun in range(modelstart, modelend):
|
|
# If Taguchi optimistaion, add specific value for each parameter to
|
|
# optimise for each experiment to user accessible namespace
|
|
if optparams:
|
|
tmp = {}
|
|
tmp.update((key, value[currentmodelrun - 1]) for key, value in optparams.items())
|
|
modelusernamespace = usernamespace.copy()
|
|
modelusernamespace.update({'optparams': tmp})
|
|
else:
|
|
modelusernamespace = usernamespace
|
|
run_model(args, currentmodelrun, modelend - 1, numbermodelruns, inputfile, modelusernamespace)
|
|
tsimend = timer()
|
|
simcompletestr = '\n=== Simulation completed in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=tsimend - tsimstart))
|
|
print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))
|
|
|
|
|
|
def run_benchmark_sim(args, inputfile, usernamespace):
|
|
"""
|
|
Run standard simulation in benchmarking mode - models are run one
|
|
after another and each model is parallelised using either OpenMP (CPU)
|
|
or CUDA (GPU)
|
|
|
|
Args:
|
|
args (dict): Namespace with command line arguments
|
|
inputfile (object): File object for the input file.
|
|
usernamespace (dict): Namespace that can be accessed by user in any
|
|
Python code blocks in input file.
|
|
"""
|
|
|
|
# Get information about host machine
|
|
hostinfo = get_host_info()
|
|
hyperthreading = ', {} cores with Hyper-Threading'.format(hostinfo['logicalcores']) if hostinfo['hyperthreading'] else ''
|
|
machineIDlong = '{}; {} x {} ({} cores{}); {} RAM; {}'.format(hostinfo['machineID'], hostinfo['sockets'], hostinfo['cpuID'], hostinfo['physicalcores'], hyperthreading, human_size(hostinfo['ram'], a_kilobyte_is_1024_bytes=True), hostinfo['osversion'])
|
|
|
|
# Initialise arrays to hold CPU thread info and times, and GPU info and times
|
|
cputhreads = np.array([], dtype=np.int32)
|
|
cputimes = np.array([])
|
|
gpuIDs = []
|
|
gputimes = np.array([])
|
|
|
|
# CPU only benchmarking
|
|
if args.gpu is None:
|
|
# Number of CPU threads to benchmark - start from single thread and double threads until maximum number of physical cores
|
|
threads = 1
|
|
maxthreads = hostinfo['physicalcores']
|
|
maxthreadspersocket = hostinfo['physicalcores'] / hostinfo['sockets']
|
|
while threads < maxthreadspersocket:
|
|
cputhreads = np.append(cputhreads, int(threads))
|
|
threads *= 2
|
|
# Check for system with only single thread
|
|
if cputhreads.size == 0:
|
|
cputhreads = np.append(cputhreads, threads)
|
|
# Add maxthreadspersocket and maxthreads if necessary
|
|
if cputhreads[-1] != maxthreadspersocket:
|
|
cputhreads = np.append(cputhreads, int(maxthreadspersocket))
|
|
if cputhreads[-1] != maxthreads:
|
|
cputhreads = np.append(cputhreads, int(maxthreads))
|
|
cputhreads = cputhreads[::-1]
|
|
cputimes = np.zeros(len(cputhreads))
|
|
|
|
numbermodelruns = len(cputhreads)
|
|
|
|
# GPU only benchmarking
|
|
else:
|
|
# Set size of array to store GPU runtimes and number of runs of model required
|
|
for gpu in args.gpu:
|
|
gpuIDs.append(gpu.name)
|
|
gputimes = np.zeros(len(args.gpu))
|
|
numbermodelruns = len(args.gpu)
|
|
# Store GPU information in a temp variable
|
|
gpus = args.gpu
|
|
|
|
usernamespace['number_model_runs'] = numbermodelruns
|
|
modelend = numbermodelruns + 1
|
|
|
|
for currentmodelrun in range(1, modelend):
|
|
# Run CPU benchmark
|
|
if args.gpu is None:
|
|
os.environ['OMP_NUM_THREADS'] = str(cputhreads[currentmodelrun - 1])
|
|
cputimes[currentmodelrun - 1] = run_model(args, currentmodelrun, modelend - 1, numbermodelruns, inputfile, usernamespace)
|
|
# Run GPU benchmark
|
|
else:
|
|
args.gpu = gpus[(currentmodelrun - 1)]
|
|
os.environ['OMP_NUM_THREADS'] = str(hostinfo['physicalcores'])
|
|
gputimes[(currentmodelrun - 1)] = run_model(args, currentmodelrun, modelend - 1, numbermodelruns, inputfile, usernamespace)
|
|
|
|
# Get model size (in cells) and number of iterations
|
|
if currentmodelrun == 1:
|
|
if numbermodelruns == 1:
|
|
outputfile = os.path.splitext(args.inputfile)[0] + '.out'
|
|
else:
|
|
outputfile = os.path.splitext(args.inputfile)[0] + str(currentmodelrun) + '.out'
|
|
f = h5py.File(outputfile, 'r')
|
|
iterations = f.attrs['Iterations']
|
|
numcells = f.attrs['nx_ny_nz']
|
|
|
|
# Save number of threads and benchmarking times to NumPy archive
|
|
np.savez(os.path.splitext(inputfile.name)[0], machineID=machineIDlong, gpuIDs=gpuIDs, cputhreads=cputhreads, cputimes=cputimes, gputimes=gputimes, iterations=iterations, numcells=numcells, version=__version__)
|
|
|
|
simcompletestr = '\n=== Simulation completed'
|
|
print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))
|
|
|
|
|
|
def run_mpi_sim(args, inputfile, usernamespace, optparams=None):
|
|
"""
|
|
Run mixed mode MPI/OpenMP simulation - MPI task farm for models with
|
|
each model parallelised using either OpenMP (CPU) or CUDA (GPU)
|
|
|
|
Args:
|
|
args (dict): Namespace with command line arguments
|
|
inputfile (object): File object for the input file.
|
|
usernamespace (dict): Namespace that can be accessed by user in any
|
|
Python code blocks in input file.
|
|
optparams (dict): Optional argument. For Taguchi optimisation it
|
|
provides the parameters to optimise and their values.
|
|
"""
|
|
|
|
from mpi4py import MPI
|
|
|
|
status = MPI.Status()
|
|
hostname = platform.node()
|
|
|
|
# Set range for number of models to run
|
|
modelstart = args.restart if args.restart else 1
|
|
modelend = modelstart + args.n
|
|
numbermodelruns = args.n
|
|
|
|
# Command line flag used to indicate a spawned worker instance
|
|
workerflag = '--mpi-worker'
|
|
numworkers = args.mpi - 1
|
|
|
|
##################
|
|
# Master process #
|
|
##################
|
|
if workerflag not in sys.argv:
|
|
# N.B Spawned worker flag (--mpi-worker) applied to sys.argv when MPI.Spawn is called
|
|
|
|
# See if the MPI communicator object is being passed as an argument (likely from a MPI.Split)
|
|
if args.mpicomm is not None:
|
|
comm = args.mpicomm
|
|
else:
|
|
comm = MPI.COMM_WORLD
|
|
|
|
tsimstart = timer()
|
|
mpistartstr = '\n=== MPI task farm (USING MPI Spawn)'
|
|
print('{} {}'.format(mpistartstr, '=' * (get_terminal_width() - 1 - len(mpistartstr))))
|
|
print('=== MPI master ({}, rank: {}) on {} spawning {} workers...'.format(comm.name, comm.Get_rank(), hostname, numworkers))
|
|
|
|
# Assemble a sys.argv replacement to pass to spawned worker
|
|
# N.B This is required as sys.argv not available when gprMax is called via api()
|
|
# Ignore mpicomm object if it exists as only strings can be passed via spawn
|
|
myargv = []
|
|
for key, value in vars(args).items():
|
|
if value:
|
|
# Input file name always comes first
|
|
if 'inputfile' in key:
|
|
myargv.append(value)
|
|
elif 'gpu' in key:
|
|
myargv.append('-' + key)
|
|
# Add GPU device ID(s) from GPU objects
|
|
for gpu in args.gpu:
|
|
myargv.append(str(gpu.deviceID))
|
|
elif 'mpicomm' in key:
|
|
pass
|
|
elif '_' in key:
|
|
key = key.replace('_', '-')
|
|
myargv.append('--' + key)
|
|
else:
|
|
myargv.append('-' + key)
|
|
if value is not True:
|
|
myargv.append(str(value))
|
|
|
|
# Create a list of work
|
|
worklist = []
|
|
for model in range(modelstart, modelend):
|
|
workobj = dict()
|
|
workobj['currentmodelrun'] = model
|
|
workobj['mpicommname'] = comm.name
|
|
if optparams:
|
|
workobj['optparams'] = optparams
|
|
worklist.append(workobj)
|
|
# Add stop sentinels
|
|
worklist += ([StopIteration] * numworkers)
|
|
|
|
# Spawn workers
|
|
newcomm = comm.Spawn(sys.executable, args=['-m', 'gprMax'] + myargv + [workerflag], maxprocs=numworkers)
|
|
|
|
# Reply to whoever asks until done
|
|
for work in worklist:
|
|
newcomm.recv(source=MPI.ANY_SOURCE, status=status)
|
|
newcomm.send(obj=work, dest=status.Get_source())
|
|
|
|
# Shutdown communicators
|
|
newcomm.Disconnect()
|
|
|
|
tsimend = timer()
|
|
simcompletestr = '\n=== MPI master ({}, rank: {}) on {} completed simulation in [HH:MM:SS]: {}'.format(comm.name, comm.Get_rank(), hostname, datetime.timedelta(seconds=tsimend - tsimstart))
|
|
print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))
|
|
|
|
##################
|
|
# Worker process #
|
|
##################
|
|
elif workerflag in sys.argv:
|
|
# Connect to parent to get communicator
|
|
try:
|
|
comm = MPI.Comm.Get_parent()
|
|
rank = comm.Get_rank()
|
|
except ValueError:
|
|
raise ValueError('MPI worker could not connect to parent')
|
|
|
|
# Select GPU and get info
|
|
gpuinfo = ''
|
|
if args.gpu is not None:
|
|
# Set device ID based on rank from list of GPUs
|
|
try:
|
|
args.gpu = args.gpu[rank]
|
|
# GPUs on multiple nodes where CUDA_VISIBLE_DEVICES is the same
|
|
# on each node
|
|
except:
|
|
args.gpu = args.gpu[rank % len(args.gpu)]
|
|
|
|
gpuinfo = ' using {} - {}, {} RAM '.format(args.gpu.deviceID,
|
|
args.gpu.name,
|
|
human_size(args.gpu.totalmem,
|
|
a_kilobyte_is_1024_bytes=True))
|
|
|
|
# Ask for work until stop sentinel
|
|
for work in iter(lambda: comm.sendrecv(0, dest=0), StopIteration):
|
|
currentmodelrun = work['currentmodelrun']
|
|
|
|
# If Taguchi optimisation, add specific value for each parameter to
|
|
# optimise for each experiment to user accessible namespace
|
|
if 'optparams' in work:
|
|
tmp = {}
|
|
tmp.update((key, value[currentmodelrun - 1]) for key, value in work['optparams'].items())
|
|
modelusernamespace = usernamespace.copy()
|
|
modelusernamespace.update({'optparams': tmp})
|
|
else:
|
|
modelusernamespace = usernamespace
|
|
|
|
# Run the model
|
|
print('Starting MPI spawned worker (parent: {}, rank: {}) on {} with model {}/{}{}\n'.format(work['mpicommname'], rank, hostname, currentmodelrun, numbermodelruns, gpuinfo))
|
|
tsolve = run_model(args, currentmodelrun, modelend - 1, numbermodelruns, inputfile, modelusernamespace)
|
|
print('Completed MPI spawned worker (parent: {}, rank: {}) on {} with model {}/{}{} in [HH:MM:SS]: {}\n'.format(work['mpicommname'], rank, hostname, currentmodelrun, numbermodelruns, gpuinfo, datetime.timedelta(seconds=tsolve)))
|
|
|
|
# Shutdown
|
|
comm.Disconnect()
|
|
|
|
|
|
def run_mpi_no_spawn_sim(args, inputfile, usernamespace, optparams=None):
|
|
"""
|
|
Alternate MPI implementation that avoids using the MPI spawn mechanism.
|
|
This implementation is designed to be used as
|
|
e.g. 'mpirun -n 5 python -m gprMax user_models/mymodel.in -n 10 --mpi-no-spawn'
|
|
|
|
Run mixed mode MPI/OpenMP simulation - MPI task farm for models with
|
|
each model parallelised using either OpenMP (CPU) or CUDA (GPU)
|
|
|
|
Args:
|
|
args (dict): Namespace with command line arguments
|
|
inputfile (object): File object for the input file.
|
|
usernamespace (dict): Namespace that can be accessed by user in any
|
|
Python code blocks in input file.
|
|
optparams (dict): Optional argument. For Taguchi optimisation it
|
|
provides the parameters to optimise and their values.
|
|
"""
|
|
|
|
from mpi4py import MPI
|
|
|
|
# Define MPI message tags
|
|
tags = Enum('tags', {'READY': 0, 'DONE': 1, 'EXIT': 2, 'START': 3})
|
|
|
|
# Initializations and preliminaries
|
|
comm = MPI.COMM_WORLD
|
|
size = comm.Get_size() # total number of processes
|
|
rank = comm.Get_rank() # rank of this process
|
|
status = MPI.Status() # get MPI status object
|
|
hostname = platform.node() # get name of processor/host
|
|
|
|
# Set range for number of models to run
|
|
modelstart = args.restart if args.restart else 1
|
|
modelend = modelstart + args.n
|
|
numbermodelruns = args.n
|
|
currentmodelrun = modelstart # can use -task argument to start numbering from something other than 1
|
|
numworkers = size - 1
|
|
|
|
##################
|
|
# Master process #
|
|
##################
|
|
if rank == 0:
|
|
tsimstart = timer()
|
|
mpistartstr = '\n=== MPI task farm (WITHOUT using MPI Spawn)'
|
|
print('{} {}'.format(mpistartstr, '=' * (get_terminal_width() - 1 - len(mpistartstr))))
|
|
print('=== MPI master ({}, rank: {}) on {} using {} workers...'.format(comm.name, comm.Get_rank(), hostname, numworkers))
|
|
|
|
closedworkers = 0
|
|
while closedworkers < numworkers:
|
|
comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=status)
|
|
source = status.Get_source()
|
|
tag = status.Get_tag()
|
|
|
|
# Worker is ready, so send it a task
|
|
if tag == tags.READY.value:
|
|
if currentmodelrun < modelend:
|
|
comm.send(currentmodelrun, dest=source, tag=tags.START.value)
|
|
currentmodelrun += 1
|
|
else:
|
|
comm.send(None, dest=source, tag=tags.EXIT.value)
|
|
|
|
# Worker has completed a task
|
|
elif tag == tags.DONE.value:
|
|
pass
|
|
|
|
# Worker has completed all tasks
|
|
elif tag == tags.EXIT.value:
|
|
closedworkers += 1
|
|
|
|
tsimend = timer()
|
|
simcompletestr = '\n=== MPI master ({}, rank: {}) on {} completed simulation in [HH:MM:SS]: {}'.format(comm.name, comm.Get_rank(), hostname, datetime.timedelta(seconds=tsimend - tsimstart))
|
|
print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))
|
|
|
|
##################
|
|
# Worker process #
|
|
##################
|
|
else:
|
|
# Get info and setup device ID for GPU(s)
|
|
gpuinfo = ''
|
|
if args.gpu is not None:
|
|
# Set device ID based on rank from list of GPUs
|
|
deviceID = (rank - 1) % len(args.gpu)
|
|
args.gpu = next(gpu for gpu in args.gpu if gpu.deviceID == deviceID)
|
|
gpuinfo = ' using {} - {}, {}'.format(args.gpu.deviceID, args.gpu.name, human_size(args.gpu.totalmem, a_kilobyte_is_1024_bytes=True))
|
|
|
|
while True:
|
|
comm.send(None, dest=0, tag=tags.READY.value)
|
|
# Receive a model number to run from the master
|
|
currentmodelrun = comm.recv(source=0, tag=MPI.ANY_TAG, status=status)
|
|
tag = status.Get_tag()
|
|
|
|
# Run a model
|
|
if tag == tags.START.value:
|
|
|
|
# If Taguchi optimistaion, add specific value for each parameter
|
|
# to optimise for each experiment to user accessible namespace
|
|
if optparams:
|
|
tmp = {}
|
|
tmp.update((key, value[currentmodelrun - 1]) for key, value in optparams.items())
|
|
modelusernamespace = usernamespace.copy()
|
|
modelusernamespace.update({'optparams': tmp})
|
|
else:
|
|
modelusernamespace = usernamespace
|
|
|
|
# Run the model
|
|
print('Starting MPI worker (parent: {}, rank: {}) on {} with model {}/{}{}\n'.format(comm.name, rank, hostname, currentmodelrun, numbermodelruns, gpuinfo))
|
|
tsolve = run_model(args, currentmodelrun, modelend - 1, numbermodelruns, inputfile, modelusernamespace)
|
|
comm.send(None, dest=0, tag=tags.DONE.value)
|
|
print('Completed MPI worker (parent: {}, rank: {}) on {} with model {}/{}{} in [HH:MM:SS]: {}\n'.format(comm.name, rank, hostname, currentmodelrun, numbermodelruns, gpuinfo, datetime.timedelta(seconds=tsolve)))
|
|
|
|
# Break out of loop when work receives exit message
|
|
elif tag == tags.EXIT.value:
|
|
break
|
|
|
|
comm.send(None, dest=0, tag=tags.EXIT.value)
|