你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 12:36:51 +08:00
91 行
3.3 KiB
Python
91 行
3.3 KiB
Python
# Copyright (C) 2015: The University of Edinburgh
|
|
# Authors: Craig Warren and Antonis Giannopoulos
|
|
#
|
|
# This file is part of gprMax.
|
|
#
|
|
# gprMax is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# gprMax is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
import os, argparse
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
from gprMax.waveforms import Waveform
|
|
|
|
|
|
"""Plot built-in waveforms that can be used for sources."""
|
|
|
|
# Parse command line arguments
|
|
parser = argparse.ArgumentParser(description='Plot built-in waveforms that can be used for sources.', usage='cd gprMax; python -m tools.plot_builtin_wave type amp freq timewindow dt')
|
|
parser.add_argument('type', help='type of waveform, e.g. gaussian, ricker etc...')
|
|
parser.add_argument('amp', type=float, help='amplitude of waveform')
|
|
parser.add_argument('freq', type=float, help='centre frequency of waveform')
|
|
parser.add_argument('timewindow', type=float, help='time window to view waveform')
|
|
parser.add_argument('dt', type=float, help='time step to view waveform')
|
|
parser.add_argument('-fft', action='store_true', default=False, help='plot FFT')
|
|
args = parser.parse_args()
|
|
|
|
w = Waveform()
|
|
w.type = args.type
|
|
w.amp = args.amp
|
|
w.freq = args.freq
|
|
timewindow = args.timewindow
|
|
dt = args.dt
|
|
|
|
time = np.arange(0, timewindow, dt)
|
|
waveform = np.zeros(len(time))
|
|
timeiter = np.nditer(time, flags=['c_index'])
|
|
|
|
while not timeiter.finished:
|
|
waveform[timeiter.index] = w.calculate_value(timeiter[0], dt)
|
|
timeiter.iternext()
|
|
|
|
if args.fft:
|
|
# Calculate magnitude of frequency spectra of waveform
|
|
power = 10 * np.log10(np.abs(np.fft.fft(waveform))**2)
|
|
freqs = np.fft.fftfreq(power.size, d=dt)
|
|
|
|
# Shift powers so that frequency with maximum power is at zero decibels
|
|
power -= np.amax(power)
|
|
|
|
# Set plotting range to 4 * centre frequency
|
|
pltrange = np.where(freqs > (4 * w.freq))[0][0]
|
|
pltrange = np.s_[0:pltrange]
|
|
|
|
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num=w.type, figsize=(20, 10), facecolor='w', edgecolor='w')
|
|
|
|
# Plot waveform
|
|
ax1.plot(time, waveform, 'r', lw=2)
|
|
ax1.set_xlabel('Time [ns]')
|
|
ax1.set_ylabel('Amplitude')
|
|
|
|
# Plot frequency spectra
|
|
markerline, stemlines, baseline = ax2.stem(freqs[pltrange]/1e9, power[pltrange], '--')
|
|
plt.setp(stemlines, 'color', 'r')
|
|
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
|
ax2.set_xlabel('Frequency [GHz]')
|
|
ax2.set_ylabel('Power [dB]')
|
|
|
|
else:
|
|
fig, ax1 = plt.subplots(num=w.type, figsize=(20, 10), facecolor='w', edgecolor='w')
|
|
|
|
# Plot waveform
|
|
ax1.plot(time, waveform, 'r', lw=2)
|
|
ax1.set_xlabel('Time [ns]')
|
|
ax1.set_ylabel('Amplitude')
|
|
|
|
[ax.grid() for ax in fig.axes] # Turn on grid
|
|
plt.show()
|
|
|
|
# Save a PDF of the figure
|
|
#fig.savefig(os.path.dirname(os.path.abspath(__file__)) + os.sep + w.type + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1) |