文件
gprMax/toolboxes/Plotting/plot_Ascan.py
2025-07-17 09:47:20 +01:00

336 行
13 KiB
Python

# Copyright (C) 2015-2025: The University of Edinburgh, United Kingdom
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import argparse
import logging
from pathlib import Path
import h5py
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import numpy as np
from gprMax.receivers import Rx
from gprMax.utilities.utilities import fft_power
logger = logging.getLogger(__name__)
def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False, save=False):
"""Plots electric and magnetic fields and currents from all receiver points
in the given output file. Each receiver point is plotted in a new figure
window.
Args:
filename: string of filename (including path) of output file.
outputs: list of field/current components to plot.
fft: boolean flag to plot FFT.
save: boolean flag to save plot to file.
Returns:
plt: matplotlib plot object.
"""
file = Path(filename)
# Open output file and read iterations
f = h5py.File(file, "r")
# Paths to grid(s) to traverse for outputs
paths = ["/"]
# Check if any subgrids and add path(s)
is_subgrids = "/subgrids" in f
if is_subgrids:
paths = paths + ["/subgrids/" + path + "/" for path in f["/subgrids"].keys()]
# Get number of receivers in grid(s)
nrxs = []
for path in paths:
if f[path].attrs["nrx"] > 0:
nrxs.append(f[path].attrs["nrx"])
else:
paths.remove(path)
# Check there are any receivers
if not paths:
logger.exception(f"No receivers found in {file}")
raise ValueError
# Loop through all grids
for path in paths:
iterations = f[path].attrs["Iterations"]
nrx = f[path].attrs["nrx"]
dt = f[path].attrs["dt"]
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
# Check for single output component when doing a FFT
if fft and not len(outputs) == 1:
logger.exception("A single output must be specified when using " + "the -fft option")
raise ValueError
# New plot for each receiver
for rx in range(1, nrx + 1):
rxpath = path + "rxs/rx" + str(rx) + "/"
availableoutputs = list(f[rxpath].keys())
# If only a single output is required, create one subplot
if len(outputs) == 1:
# Check for polarity of output and if requested output is in file
if outputs[0][-1] == "-":
polarity = -1
outputtext = "-" + outputs[0][0:-1]
output = outputs[0][0:-1]
else:
polarity = 1
outputtext = outputs[0]
output = outputs[0]
if output not in availableoutputs:
logger.exception(
f"{output} output requested to plot, but "
+ f"the available output for receiver 1 is "
+ f"{', '.join(availableoutputs)}"
)
raise ValueError
outputdata = f[rxpath + output][:] * polarity
# Plotting if FFT required
if fft:
# FFT
freqs, power = fft_power(outputdata, dt)
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
# Set plotting range to -60dB from maximum power or 4 times
# frequency at maximum power
try:
pltrange = np.where(power[freqmaxpower:] < -60)[0][0] + freqmaxpower + 1
except:
pltrange = freqmaxpower * 4
pltrange = np.s_[0:pltrange]
# Plot time history of output component
fig, (ax1, ax2) = plt.subplots(
nrows=1,
ncols=2,
num=rxpath + " - " + f[rxpath].attrs["Name"],
figsize=(20, 10),
facecolor="w",
edgecolor="w",
)
line1 = ax1.plot(time, outputdata, "r", lw=2, label=outputtext)
ax1.set_xlabel("Time [s]")
ax1.set_ylabel(outputtext + " field strength [V/m]")
ax1.set_xlim([0, np.amax(time)])
ax1.grid(which="both", axis="both", linestyle="-.")
# Plot frequency spectra
markerline, stemlines, baseline = ax2.stem(
freqs[pltrange], power[pltrange], "-."
)
plt.setp(baseline, "linewidth", 0)
plt.setp(stemlines, "color", "r")
plt.setp(markerline, "markerfacecolor", "r", "markeredgecolor", "r")
line2 = ax2.plot(freqs[pltrange], power[pltrange], "r", lw=2)
ax2.set_xlabel("Frequency [Hz]")
ax2.set_ylabel("Power [dB]")
ax2.grid(which="both", axis="both", linestyle="-.")
# Change colours and labels for magnetic field components
# or currents
if "H" in outputs[0]:
plt.setp(line1, color="g")
plt.setp(line2, color="g")
plt.setp(ax1, ylabel=outputtext + " field strength [A/m]")
plt.setp(stemlines, "color", "g")
plt.setp(markerline, "markerfacecolor", "g", "markeredgecolor", "g")
elif "I" in outputs[0]:
plt.setp(line1, color="b")
plt.setp(line2, color="b")
plt.setp(ax1, ylabel=outputtext + " current [A]")
plt.setp(stemlines, "color", "b")
plt.setp(markerline, "markerfacecolor", "b", "markeredgecolor", "b")
plt.show()
# Plotting if no FFT required
else:
fig, ax = plt.subplots(
subplot_kw=dict(
xlabel="Time [s]",
ylabel=outputtext + " field strength [V/m]",
),
num=rxpath + " - " + f[rxpath].attrs["Name"],
figsize=(20, 10),
facecolor="w",
edgecolor="w",
)
line = ax.plot(time, outputdata, "r", lw=2, label=outputtext)
ax.set_xlim([0, np.amax(time)])
# ax.set_ylim([-15, 20])
ax.grid(which="both", axis="both", linestyle="-.")
if "H" in output:
plt.setp(line, color="g")
plt.setp(ax, ylabel=outputtext + ", field strength [A/m]")
elif "I" in output:
plt.setp(line, color="b")
plt.setp(ax, ylabel=outputtext + ", current [A]")
# If multiple outputs required, create all nine subplots and
# populate only the specified ones
else:
plt_cols = 3 if len(outputs) == 9 else 2
fig, axs = plt.subplots(
subplot_kw=dict(xlabel="Time [s]"),
num=rxpath + " - " + f[rxpath].attrs["Name"],
figsize=(20, 10),
nrows = 3,
ncols = plt_cols,
facecolor="w",
edgecolor="w",
)
for output in outputs:
# Check for polarity of output and if requested output
# is in file
if output[-1] == "-":
polarity = -1
outputtext = "-" + output[0:-1]
output = output[0:-1]
else:
polarity = 1
outputtext = output
# Check if requested output is in file
if output not in availableoutputs:
logger.exception(
f"Output(s) requested to plot: "
+ f"{', '.join(outputs)}, but available output(s) "
+ f"for receiver {rx} in the file: "
+ f"{', '.join(availableoutputs)}"
)
raise ValueError
outputdata = f[rxpath + output][:] * polarity
if output == "Ex":
axs[0, 0].plot(time, outputdata, "r", lw=2, label=outputtext)
axs[0, 0].set_ylabel(outputtext + ", field strength [V/m]")
elif output == "Ey":
axs[1, 0].plot(time, outputdata, "r", lw=2, label=outputtext)
axs[1, 0].set_ylabel(outputtext + ", field strength [V/m]")
elif output == "Ez":
axs[2, 0].plot(time, outputdata, "r", lw=2, label=outputtext)
axs[2, 0].set_ylabel(outputtext + ", field strength [V/m]")
elif output == "Hx":
axs[0, 1].plot(time, outputdata, "g", lw=2, label=outputtext)
axs[0, 1].set_ylabel(outputtext + ", field strength [A/m]")
elif output == "Hy":
axs[1, 1].plot(time, outputdata, "g", lw=2, label=outputtext)
axs[1, 1].set_ylabel(outputtext + ", field strength [A/m]")
elif output == "Hz":
axs[2, 1].plot(time, outputdata, "g", lw=2, label=outputtext)
axs[2, 1].set_ylabel(outputtext + ", field strength [A/m]")
elif output == "Ix":
axs[0, 2].plot(time, outputdata, "b", lw=2, label=outputtext)
axs[0, 2].set_ylabel(outputtext + ", current [A]")
elif output == "Iy":
axs[1, 2].plot(time, outputdata, "b", lw=2, label=outputtext)
axs[1, 2].set_ylabel(outputtext + ", current [A]")
elif output == "Iz":
axs[2, 2].plot(time, outputdata, "b", lw=2, label=outputtext)
axs[2, 2].set_ylabel(outputtext + ", current [A]")
for ax in fig.axes:
ax.set_xlim([0, np.amax(time)])
ax.grid(which="both", axis="both", linestyle="-.")
f.close()
if save:
# Save a PDF of the figure
fig.savefig(
filename[:-3] + ".pdf",
dpi=None,
format="pdf",
bbox_inches="tight",
pad_inches=0.1,
)
# Save a PNG of the figure
# fig.savefig(filename[:-3] + '.png', dpi=150, format='png',
# bbox_inches='tight', pad_inches=0.1)
return plt
if __name__ == "__main__":
# Parse command line arguments
parser = argparse.ArgumentParser(
description="Plots electric and magnetic fields and "
+ "currents from all receiver points in the given output file. "
+ "Each receiver point is plotted in a new figure window.",
usage="cd gprMax; python -m toolboxes.Plotting.plot_Ascan outputfile",
)
parser.add_argument("outputfile", help="name of output file including path")
parser.add_argument(
"--outputs",
help="outputs to be plotted",
default=Rx.defaultoutputs,
choices=[
"Ex",
"Ey",
"Ez",
"Hx",
"Hy",
"Hz",
"Ix",
"Iy",
"Iz",
"Ex-",
"Ey-",
"Ez-",
"Hx-",
"Hy-",
"Hz-",
"Ix-",
"Iy-",
"Iz-",
],
nargs="+",
)
parser.add_argument(
"-fft",
action="store_true",
default=False,
help="plot FFT (single output must be specified)",
)
parser.add_argument(
"-save",
action="store_true",
default=False,
help="save plot directly to file, i.e. do not display",
)
args = parser.parse_args()
plthandle = mpl_plot(args.outputfile, args.outputs, fft=args.fft, save=args.save)
plthandle.show()