你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-04 11:36:52 +08:00
336 行
13 KiB
Python
336 行
13 KiB
Python
# Copyright (C) 2015-2025: The University of Edinburgh, United Kingdom
|
|
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
|
|
#
|
|
# This file is part of gprMax.
|
|
#
|
|
# gprMax is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# gprMax is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import h5py
|
|
import matplotlib.gridspec as gridspec
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
from gprMax.receivers import Rx
|
|
from gprMax.utilities.utilities import fft_power
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False, save=False):
|
|
"""Plots electric and magnetic fields and currents from all receiver points
|
|
in the given output file. Each receiver point is plotted in a new figure
|
|
window.
|
|
|
|
Args:
|
|
filename: string of filename (including path) of output file.
|
|
outputs: list of field/current components to plot.
|
|
fft: boolean flag to plot FFT.
|
|
save: boolean flag to save plot to file.
|
|
|
|
Returns:
|
|
plt: matplotlib plot object.
|
|
"""
|
|
|
|
file = Path(filename)
|
|
|
|
# Open output file and read iterations
|
|
f = h5py.File(file, "r")
|
|
|
|
# Paths to grid(s) to traverse for outputs
|
|
paths = ["/"]
|
|
|
|
# Check if any subgrids and add path(s)
|
|
is_subgrids = "/subgrids" in f
|
|
if is_subgrids:
|
|
paths = paths + ["/subgrids/" + path + "/" for path in f["/subgrids"].keys()]
|
|
|
|
# Get number of receivers in grid(s)
|
|
nrxs = []
|
|
for path in paths:
|
|
if f[path].attrs["nrx"] > 0:
|
|
nrxs.append(f[path].attrs["nrx"])
|
|
else:
|
|
paths.remove(path)
|
|
|
|
# Check there are any receivers
|
|
if not paths:
|
|
logger.exception(f"No receivers found in {file}")
|
|
raise ValueError
|
|
|
|
# Loop through all grids
|
|
for path in paths:
|
|
iterations = f[path].attrs["Iterations"]
|
|
nrx = f[path].attrs["nrx"]
|
|
dt = f[path].attrs["dt"]
|
|
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
|
|
|
|
# Check for single output component when doing a FFT
|
|
if fft and not len(outputs) == 1:
|
|
logger.exception("A single output must be specified when using " + "the -fft option")
|
|
raise ValueError
|
|
|
|
# New plot for each receiver
|
|
for rx in range(1, nrx + 1):
|
|
rxpath = path + "rxs/rx" + str(rx) + "/"
|
|
availableoutputs = list(f[rxpath].keys())
|
|
|
|
# If only a single output is required, create one subplot
|
|
if len(outputs) == 1:
|
|
# Check for polarity of output and if requested output is in file
|
|
if outputs[0][-1] == "-":
|
|
polarity = -1
|
|
outputtext = "-" + outputs[0][0:-1]
|
|
output = outputs[0][0:-1]
|
|
else:
|
|
polarity = 1
|
|
outputtext = outputs[0]
|
|
output = outputs[0]
|
|
|
|
if output not in availableoutputs:
|
|
logger.exception(
|
|
f"{output} output requested to plot, but "
|
|
+ f"the available output for receiver 1 is "
|
|
+ f"{', '.join(availableoutputs)}"
|
|
)
|
|
raise ValueError
|
|
|
|
outputdata = f[rxpath + output][:] * polarity
|
|
|
|
# Plotting if FFT required
|
|
if fft:
|
|
# FFT
|
|
freqs, power = fft_power(outputdata, dt)
|
|
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
|
|
|
|
# Set plotting range to -60dB from maximum power or 4 times
|
|
# frequency at maximum power
|
|
try:
|
|
pltrange = np.where(power[freqmaxpower:] < -60)[0][0] + freqmaxpower + 1
|
|
except:
|
|
pltrange = freqmaxpower * 4
|
|
|
|
pltrange = np.s_[0:pltrange]
|
|
|
|
# Plot time history of output component
|
|
fig, (ax1, ax2) = plt.subplots(
|
|
nrows=1,
|
|
ncols=2,
|
|
num=rxpath + " - " + f[rxpath].attrs["Name"],
|
|
figsize=(20, 10),
|
|
facecolor="w",
|
|
edgecolor="w",
|
|
)
|
|
line1 = ax1.plot(time, outputdata, "r", lw=2, label=outputtext)
|
|
ax1.set_xlabel("Time [s]")
|
|
ax1.set_ylabel(outputtext + " field strength [V/m]")
|
|
ax1.set_xlim([0, np.amax(time)])
|
|
ax1.grid(which="both", axis="both", linestyle="-.")
|
|
|
|
# Plot frequency spectra
|
|
markerline, stemlines, baseline = ax2.stem(
|
|
freqs[pltrange], power[pltrange], "-."
|
|
)
|
|
plt.setp(baseline, "linewidth", 0)
|
|
plt.setp(stemlines, "color", "r")
|
|
plt.setp(markerline, "markerfacecolor", "r", "markeredgecolor", "r")
|
|
line2 = ax2.plot(freqs[pltrange], power[pltrange], "r", lw=2)
|
|
ax2.set_xlabel("Frequency [Hz]")
|
|
ax2.set_ylabel("Power [dB]")
|
|
ax2.grid(which="both", axis="both", linestyle="-.")
|
|
|
|
# Change colours and labels for magnetic field components
|
|
# or currents
|
|
if "H" in outputs[0]:
|
|
plt.setp(line1, color="g")
|
|
plt.setp(line2, color="g")
|
|
plt.setp(ax1, ylabel=outputtext + " field strength [A/m]")
|
|
plt.setp(stemlines, "color", "g")
|
|
plt.setp(markerline, "markerfacecolor", "g", "markeredgecolor", "g")
|
|
elif "I" in outputs[0]:
|
|
plt.setp(line1, color="b")
|
|
plt.setp(line2, color="b")
|
|
plt.setp(ax1, ylabel=outputtext + " current [A]")
|
|
plt.setp(stemlines, "color", "b")
|
|
plt.setp(markerline, "markerfacecolor", "b", "markeredgecolor", "b")
|
|
|
|
plt.show()
|
|
|
|
# Plotting if no FFT required
|
|
else:
|
|
fig, ax = plt.subplots(
|
|
subplot_kw=dict(
|
|
xlabel="Time [s]",
|
|
ylabel=outputtext + " field strength [V/m]",
|
|
),
|
|
num=rxpath + " - " + f[rxpath].attrs["Name"],
|
|
figsize=(20, 10),
|
|
facecolor="w",
|
|
edgecolor="w",
|
|
)
|
|
line = ax.plot(time, outputdata, "r", lw=2, label=outputtext)
|
|
ax.set_xlim([0, np.amax(time)])
|
|
# ax.set_ylim([-15, 20])
|
|
ax.grid(which="both", axis="both", linestyle="-.")
|
|
|
|
if "H" in output:
|
|
plt.setp(line, color="g")
|
|
plt.setp(ax, ylabel=outputtext + ", field strength [A/m]")
|
|
elif "I" in output:
|
|
plt.setp(line, color="b")
|
|
plt.setp(ax, ylabel=outputtext + ", current [A]")
|
|
|
|
# If multiple outputs required, create all nine subplots and
|
|
# populate only the specified ones
|
|
else:
|
|
plt_cols = 3 if len(outputs) == 9 else 2
|
|
|
|
fig, axs = plt.subplots(
|
|
subplot_kw=dict(xlabel="Time [s]"),
|
|
num=rxpath + " - " + f[rxpath].attrs["Name"],
|
|
figsize=(20, 10),
|
|
nrows = 3,
|
|
ncols = plt_cols,
|
|
facecolor="w",
|
|
edgecolor="w",
|
|
)
|
|
|
|
for output in outputs:
|
|
# Check for polarity of output and if requested output
|
|
# is in file
|
|
if output[-1] == "-":
|
|
polarity = -1
|
|
outputtext = "-" + output[0:-1]
|
|
output = output[0:-1]
|
|
else:
|
|
polarity = 1
|
|
outputtext = output
|
|
|
|
# Check if requested output is in file
|
|
if output not in availableoutputs:
|
|
logger.exception(
|
|
f"Output(s) requested to plot: "
|
|
+ f"{', '.join(outputs)}, but available output(s) "
|
|
+ f"for receiver {rx} in the file: "
|
|
+ f"{', '.join(availableoutputs)}"
|
|
)
|
|
raise ValueError
|
|
|
|
outputdata = f[rxpath + output][:] * polarity
|
|
|
|
if output == "Ex":
|
|
axs[0, 0].plot(time, outputdata, "r", lw=2, label=outputtext)
|
|
axs[0, 0].set_ylabel(outputtext + ", field strength [V/m]")
|
|
elif output == "Ey":
|
|
axs[1, 0].plot(time, outputdata, "r", lw=2, label=outputtext)
|
|
axs[1, 0].set_ylabel(outputtext + ", field strength [V/m]")
|
|
elif output == "Ez":
|
|
axs[2, 0].plot(time, outputdata, "r", lw=2, label=outputtext)
|
|
axs[2, 0].set_ylabel(outputtext + ", field strength [V/m]")
|
|
elif output == "Hx":
|
|
axs[0, 1].plot(time, outputdata, "g", lw=2, label=outputtext)
|
|
axs[0, 1].set_ylabel(outputtext + ", field strength [A/m]")
|
|
elif output == "Hy":
|
|
axs[1, 1].plot(time, outputdata, "g", lw=2, label=outputtext)
|
|
axs[1, 1].set_ylabel(outputtext + ", field strength [A/m]")
|
|
elif output == "Hz":
|
|
axs[2, 1].plot(time, outputdata, "g", lw=2, label=outputtext)
|
|
axs[2, 1].set_ylabel(outputtext + ", field strength [A/m]")
|
|
elif output == "Ix":
|
|
axs[0, 2].plot(time, outputdata, "b", lw=2, label=outputtext)
|
|
axs[0, 2].set_ylabel(outputtext + ", current [A]")
|
|
elif output == "Iy":
|
|
axs[1, 2].plot(time, outputdata, "b", lw=2, label=outputtext)
|
|
axs[1, 2].set_ylabel(outputtext + ", current [A]")
|
|
elif output == "Iz":
|
|
axs[2, 2].plot(time, outputdata, "b", lw=2, label=outputtext)
|
|
axs[2, 2].set_ylabel(outputtext + ", current [A]")
|
|
for ax in fig.axes:
|
|
ax.set_xlim([0, np.amax(time)])
|
|
ax.grid(which="both", axis="both", linestyle="-.")
|
|
|
|
f.close()
|
|
|
|
if save:
|
|
# Save a PDF of the figure
|
|
fig.savefig(
|
|
filename[:-3] + ".pdf",
|
|
dpi=None,
|
|
format="pdf",
|
|
bbox_inches="tight",
|
|
pad_inches=0.1,
|
|
)
|
|
# Save a PNG of the figure
|
|
# fig.savefig(filename[:-3] + '.png', dpi=150, format='png',
|
|
# bbox_inches='tight', pad_inches=0.1)
|
|
|
|
return plt
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Parse command line arguments
|
|
parser = argparse.ArgumentParser(
|
|
description="Plots electric and magnetic fields and "
|
|
+ "currents from all receiver points in the given output file. "
|
|
+ "Each receiver point is plotted in a new figure window.",
|
|
usage="cd gprMax; python -m toolboxes.Plotting.plot_Ascan outputfile",
|
|
)
|
|
parser.add_argument("outputfile", help="name of output file including path")
|
|
parser.add_argument(
|
|
"--outputs",
|
|
help="outputs to be plotted",
|
|
default=Rx.defaultoutputs,
|
|
choices=[
|
|
"Ex",
|
|
"Ey",
|
|
"Ez",
|
|
"Hx",
|
|
"Hy",
|
|
"Hz",
|
|
"Ix",
|
|
"Iy",
|
|
"Iz",
|
|
"Ex-",
|
|
"Ey-",
|
|
"Ez-",
|
|
"Hx-",
|
|
"Hy-",
|
|
"Hz-",
|
|
"Ix-",
|
|
"Iy-",
|
|
"Iz-",
|
|
],
|
|
nargs="+",
|
|
)
|
|
parser.add_argument(
|
|
"-fft",
|
|
action="store_true",
|
|
default=False,
|
|
help="plot FFT (single output must be specified)",
|
|
)
|
|
parser.add_argument(
|
|
"-save",
|
|
action="store_true",
|
|
default=False,
|
|
help="save plot directly to file, i.e. do not display",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
plthandle = mpl_plot(args.outputfile, args.outputs, fft=args.fft, save=args.save)
|
|
|
|
plthandle.show()
|