你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-07 23:14:03 +08:00
99 行
3.7 KiB
Python
99 行
3.7 KiB
Python
# Copyright (C) 2015-2025: The University of Edinburgh, United Kingdom
|
|
# Authors: Craig Warren, Antonis Giannopoulos, John Hartley,
|
|
# and Nathan Mannall
|
|
#
|
|
# This file is part of gprMax.
|
|
#
|
|
# gprMax is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# gprMax is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import h5py
|
|
import numpy as np
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def diff_output_files(filename1, filename2):
|
|
"""Calculates differences between two output files.
|
|
|
|
Args:
|
|
filename1: string of filename (including path) of output file 1.
|
|
filename2: string of filename (including path) of output file 2.
|
|
|
|
Returns:
|
|
time: numpy array containing time.
|
|
datadiffs: numpy array containing power (dB) of differences.
|
|
"""
|
|
|
|
file1 = h5py.File(Path(filename1), "r")
|
|
file2 = h5py.File(Path(filename2), "r")
|
|
# Path to receivers in files
|
|
path = "rxs/rx1/"
|
|
|
|
# Get available field output component names
|
|
outputs1 = list(file1[path].keys())
|
|
outputs2 = list(file2[path].keys())
|
|
if outputs1 != outputs2:
|
|
logger.exception("Field output components are not the same in each file")
|
|
raise ValueError
|
|
|
|
# Check that type of float used to store fields matches
|
|
floattype1 = file1[path + outputs1[0]].dtype
|
|
floattype2 = file2[path + outputs2[0]].dtype
|
|
if floattype1 != floattype2:
|
|
logger.warning(
|
|
f"Type of floating point number in test model ({file1[path + outputs1[0]].dtype}) "
|
|
f"does not match type in reference solution ({file2[path + outputs2[0]].dtype})\n"
|
|
)
|
|
|
|
# Arrays for storing time
|
|
time1 = np.zeros((file1.attrs["Iterations"]), dtype=floattype1)
|
|
time1 = np.linspace(0, (file1.attrs["Iterations"] - 1), num=file1.attrs["Iterations"])
|
|
time2 = np.zeros((file2.attrs["Iterations"]), dtype=floattype2)
|
|
time2 = np.linspace(0, (file2.attrs["Iterations"] - 1), num=file2.attrs["Iterations"])
|
|
|
|
# Arrays for storing field data
|
|
data1 = np.zeros((file1.attrs["Iterations"], len(outputs1)), dtype=floattype1)
|
|
data2 = np.zeros((file2.attrs["Iterations"], len(outputs2)), dtype=floattype2)
|
|
for ID, name in enumerate(outputs1):
|
|
data1[:, ID] = file1[path + str(name)][:]
|
|
data2[:, ID] = file2[path + str(name)][:]
|
|
if np.any(np.isnan(data1[:, ID])) or np.any(np.isnan(data2[:, ID])):
|
|
logger.exception("Data contains NaNs")
|
|
raise ValueError
|
|
|
|
file1.close()
|
|
file2.close()
|
|
|
|
# Diffs
|
|
datadiffs = np.zeros(data1.shape, dtype=np.float64)
|
|
for i in range(len(outputs2)):
|
|
maxi = np.amax(np.abs(data1[:, i]))
|
|
datadiffs[:, i] = np.divide(
|
|
np.abs(data2[:, i] - data1[:, i]),
|
|
maxi,
|
|
out=np.zeros_like(data1[:, i]),
|
|
where=maxi != 0,
|
|
) # Replace any division by zero with zero
|
|
|
|
# Calculate power (ignore warning from taking a log of any zero values)
|
|
with np.errstate(divide="ignore"):
|
|
datadiffs[:, i] = 20 * np.log10(datadiffs[:, i])
|
|
# Replace any NaNs or Infs from zero division
|
|
datadiffs[:, i][np.invert(np.isfinite(datadiffs[:, i]))] = 0
|
|
|
|
return time1, datadiffs
|