你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 12:36:51 +08:00
229 行
8.0 KiB
Python
229 行
8.0 KiB
Python
# Copyright (C) 2015-2016: The University of Edinburgh
|
||
# Authors: Craig Warren and Antonis Giannopoulos
|
||
#
|
||
# This file is part of gprMax.
|
||
#
|
||
# gprMax is free software: you can redistribute it and/or modify
|
||
# it under the terms of the GNU General Public License as published by
|
||
# the Free Software Foundation, either version 3 of the License, or
|
||
# (at your option) any later version.
|
||
#
|
||
# gprMax is distributed in the hope that it will be useful,
|
||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
# GNU General Public License for more details.
|
||
#
|
||
# You should have received a copy of the GNU General Public License
|
||
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||
|
||
import numpy as np
|
||
import matplotlib.pyplot as plt
|
||
|
||
from gprMax.constants import c, floattype, complextype
|
||
from gprMax.materials import Material
|
||
|
||
|
||
class FDTDGrid:
|
||
"""Holds attributes associated with the entire grid. A convenient way for accessing regularly used parameters."""
|
||
|
||
def __init__(self):
|
||
self.inputfilename = ''
|
||
self.inputdirectory = ''
|
||
self.title = ''
|
||
self.messages = True
|
||
self.nx = 0
|
||
self.ny = 0
|
||
self.nz = 0
|
||
self.dx = 0
|
||
self.dy = 0
|
||
self.dz = 0
|
||
self.dt = 0
|
||
self.iterations = 0
|
||
self.timewindow = 0
|
||
self.nthreads = 0
|
||
self.cfs = []
|
||
self.pmlthickness = 10
|
||
self.pmls = []
|
||
self.materials = []
|
||
self.mixingmodels = []
|
||
self.averagevolumeobjects = True
|
||
self.fractalvolumes = []
|
||
self.geometryviews = []
|
||
self.waveforms = []
|
||
self.voltagesources = []
|
||
self.hertziandipoles = []
|
||
self.magneticdipoles = []
|
||
self.transmissionlines = []
|
||
self.srcstepx = 0
|
||
self.srcstepy = 0
|
||
self.srcstepz = 0
|
||
self.rxstepx = 0
|
||
self.rxstepy = 0
|
||
self.rxstepz = 0
|
||
self.rxs = []
|
||
self.snapshots = []
|
||
|
||
def initialise_std_arrays(self):
|
||
"""Initialise an array for volumetric material IDs (solid); boolean arrays for specifying whether materials can have dielectric smoothing (rigid);
|
||
an array for cell edge IDs (ID); and arrays for the electric and magnetic field components. Solid and ID arrays are initialised to free_space (one); rigid arrays
|
||
to allow dielectric smoothing (zero).
|
||
"""
|
||
self.solid = np.ones((self.nx + 1, self.ny + 1, self.nz + 1), dtype=np.uint32)
|
||
self.rigidE = np.zeros((12, self.nx + 1, self.ny + 1, self.nz + 1), dtype=np.int8)
|
||
self.rigidH = np.zeros((6, self.nx + 1, self.ny + 1, self.nz + 1), dtype=np.int8)
|
||
self.IDlookup = {'Ex': 0, 'Ey': 1, 'Ez': 2, 'Hx': 3, 'Hy': 4, 'Hz': 5}
|
||
self.ID = np.ones((6, self.nx + 1, self.ny + 1, self.nz + 1), dtype=np.uint32)
|
||
self.Ex = np.zeros((self.nx, self.ny + 1, self.nz + 1), dtype=floattype)
|
||
self.Ey = np.zeros((self.nx + 1, self.ny, self.nz + 1), dtype=floattype)
|
||
self.Ez = np.zeros((self.nx + 1, self.ny + 1, self.nz), dtype=floattype)
|
||
self.Hx = np.zeros((self.nx + 1, self.ny, self.nz), dtype=floattype)
|
||
self.Hy = np.zeros((self.nx, self.ny + 1, self.nz), dtype=floattype)
|
||
self.Hz = np.zeros((self.nx, self.ny, self.nz + 1), dtype=floattype)
|
||
|
||
def initialise_std_updatecoeff_arrays(self):
|
||
"""Initialise arrays for storing update coefficients."""
|
||
self.updatecoeffsE = np.zeros((len(self.materials), 5), dtype=floattype)
|
||
self.updatecoeffsH = np.zeros((len(self.materials), 5), dtype=floattype)
|
||
|
||
def initialise_dispersive_arrays(self):
|
||
"""Initialise arrays for storing coefficients when there are dispersive materials present."""
|
||
self.Tx = np.zeros((Material.maxpoles, self.nx, self.ny + 1, self.nz + 1), dtype=complextype)
|
||
self.Ty = np.zeros((Material.maxpoles, self.nx + 1, self.ny, self.nz + 1), dtype=complextype)
|
||
self.Tz = np.zeros((Material.maxpoles, self.nx + 1, self.ny + 1, self.nz), dtype=complextype)
|
||
self.updatecoeffsdispersive = np.zeros((len(self.materials), 3 * Material.maxpoles), dtype=complextype)
|
||
|
||
|
||
def dispersion_check(G):
|
||
"""Check for potential numerical dispersion. Is the smallest wavelength present in the simulation discretised by at least a factor of 10
|
||
|
||
Args:
|
||
G (class): Grid class instance - holds essential parameters describing the model.
|
||
|
||
Returns:
|
||
resolution (float): Potential numerical dispersion
|
||
"""
|
||
|
||
# Minimum number of spatial steps to resolve smallest wavelength
|
||
resolvedsteps = 10
|
||
|
||
# Find maximum frequency
|
||
maxfreqs = []
|
||
for waveform in G.waveforms:
|
||
|
||
# User-defined waveform
|
||
if waveform.uservalues is not None:
|
||
waveformvalues = waveform.uservalues
|
||
|
||
# Built-in waveform
|
||
else:
|
||
time = np.linspace(0, 1, G.iterations)
|
||
time *= (G.iterations * G.dt)
|
||
waveformvalues = np.zeros(len(time))
|
||
timeiter = np.nditer(time, flags=['c_index'])
|
||
|
||
while not timeiter.finished:
|
||
waveformvalues[timeiter.index] = waveform.calculate_value(timeiter[0], G.dt)
|
||
timeiter.iternext()
|
||
|
||
# Calculate magnitude of frequency spectra of waveform
|
||
power = 20 * np.log10(np.abs(np.fft.fft(waveformvalues))**2)
|
||
freqs = np.fft.fftfreq(power.size, d=G.dt)
|
||
|
||
# Shift powers so that frequency with maximum power is at zero decibels
|
||
power -= np.amax(power)
|
||
|
||
# Set maximum frequency to -60dB from maximum power
|
||
freq = np.where((np.amax(power[1::]) - power[1::]) > 60)[0][0] + 1
|
||
maxfreqs.append(freqs[freq])
|
||
|
||
if maxfreqs:
|
||
maxfreq = max(maxfreqs)
|
||
|
||
# Find minimum wavelength
|
||
ers = [material.er for material in G.materials]
|
||
maxer = max(ers)
|
||
|
||
# Minimum velocity
|
||
minvelocity = c / np.sqrt(maxer)
|
||
|
||
# Minimum wavelength
|
||
minwavelength = minvelocity / maxfreq
|
||
|
||
# Resolution of minimum wavelength
|
||
resolution = minwavelength / resolvedsteps
|
||
|
||
else:
|
||
resolution = 0
|
||
|
||
return resolution
|
||
|
||
|
||
def get_other_directions(direction):
|
||
"""Return the two other directions from x, y, z given a single direction
|
||
|
||
Args:
|
||
direction (str): Component x, y or z
|
||
|
||
Returns:
|
||
(tuple): Two directions from x, y, z
|
||
"""
|
||
|
||
directions = {'x': ('y', 'z'), 'y': ('x', 'z'), 'z': ('x', 'y')}
|
||
|
||
return directions[direction]
|
||
|
||
|
||
def Ix(x, y, z, Hy, Hz, G):
|
||
"""Calculates the x-component of current at a grid position.
|
||
|
||
Args:
|
||
x, y, z (float): Coordinates of position in grid.
|
||
Hy, Hz (memory view): numpy array of magnetic field values.
|
||
G (class): Grid class instance - holds essential parameters describing the model.
|
||
"""
|
||
|
||
if y == 0 or z == 0:
|
||
Ix = 0
|
||
return Ix
|
||
|
||
else:
|
||
Ix = G.dy * (Hy[x, y, z - 1] - Hy[x, y, z]) + G.dz * (Hz[x, y, z] - Hz[x, y - 1, z])
|
||
return Ix
|
||
|
||
def Iy(x, y, z, Hx, Hz, G):
|
||
"""Calculates the y-component of current at a grid position.
|
||
|
||
Args:
|
||
x, y, z (float): Coordinates of position in grid.
|
||
Hx, Hz (memory view): numpy array of magnetic field values.
|
||
G (class): Grid class instance - holds essential parameters describing the model.
|
||
"""
|
||
|
||
if x == 0 or z == 0:
|
||
Iy = 0
|
||
return Iy
|
||
|
||
else:
|
||
Iy = G.dx * (Hx[x, y, z] - Hx[x, y, z - 1]) + G.dz * (Hz[x - 1, y, z] - Hz[x, y, z])
|
||
return Iy
|
||
|
||
def Iz(x, y, z, Hx, Hy, G):
|
||
"""Calculates the z-component of current at a grid position.
|
||
|
||
Args:
|
||
x, y, z (float): Coordinates of position in grid.
|
||
Hx, Hy (memory view): numpy array of magnetic field values.
|
||
G (class): Grid class instance - holds essential parameters describing the model.
|
||
"""
|
||
|
||
if x == 0 or y == 0:
|
||
Iz = 0
|
||
return Iz
|
||
|
||
else:
|
||
Iz = G.dx * (Hx[x, y - 1, z] - Hx[x, y, z]) + G.dy * (Hy[x, y, z] - Hy[x - 1, y, z])
|
||
return Iz
|
||
|
||
|
||
|