你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 12:36:51 +08:00
474 行
23 KiB
Python
474 行
23 KiB
Python
# Copyright (C) 2015-2016: The University of Edinburgh
|
||
# Authors: Craig Warren and Antonis Giannopoulos
|
||
#
|
||
# This file is part of gprMax.
|
||
#
|
||
# gprMax is free software: you can redistribute it and/or modify
|
||
# it under the terms of the GNU General Public License as published by
|
||
# the Free Software Foundation, either version 3 of the License, or
|
||
# (at your option) any later version.
|
||
#
|
||
# gprMax is distributed in the hope that it will be useful,
|
||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
# GNU General Public License for more details.
|
||
#
|
||
# You should have received a copy of the GNU General Public License
|
||
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||
|
||
"""gprMax.gprMax: provides entry point main()."""
|
||
|
||
import argparse, datetime, itertools, os, psutil, sys
|
||
from time import perf_counter
|
||
from enum import Enum
|
||
|
||
import numpy as np
|
||
|
||
import gprMax
|
||
from gprMax.constants import c, e0, m0, z0, floattype
|
||
from gprMax.exceptions import GeneralError
|
||
from gprMax.fields_update import update_electric, update_magnetic, update_electric_dispersive_multipole_A, update_electric_dispersive_multipole_B, update_electric_dispersive_1pole_A, update_electric_dispersive_1pole_B
|
||
from gprMax.grid import FDTDGrid, dispersion_check
|
||
from gprMax.input_cmds_geometry import process_geometrycmds
|
||
from gprMax.input_cmds_file import process_python_include_code, write_processed_file, check_cmd_names
|
||
from gprMax.input_cmds_multiuse import process_multicmds
|
||
from gprMax.input_cmds_singleuse import process_singlecmds
|
||
from gprMax.materials import Material
|
||
from gprMax.writer_hdf5 import prepare_hdf5, write_hdf5
|
||
from gprMax.pml import build_pmls, update_electric_pml, update_magnetic_pml
|
||
from gprMax.utilities import update_progress, logo, human_size
|
||
from gprMax.yee_cell_build import build_electric_components, build_magnetic_components
|
||
|
||
|
||
def main():
|
||
"""This is the main function for gprMax."""
|
||
|
||
# Print gprMax logo, version, and licencing/copyright information
|
||
logo(gprMax.__version__ + ' (Bowmore)')
|
||
|
||
# Parse command line arguments
|
||
parser = argparse.ArgumentParser(prog='gprMax', description='Electromagnetic modelling software based on the Finite-Difference Time-Domain (FDTD) method')
|
||
parser.add_argument('inputfile', help='path to and name of inputfile')
|
||
parser.add_argument('-n', default=1, type=int, help='number of times to run the input file')
|
||
parser.add_argument('-mpi', action='store_true', default=False, help='switch on MPI task farm')
|
||
parser.add_argument('-benchmark', action='store_true', default=False, help='switch on benchmarking mode')
|
||
parser.add_argument('--geometry-only', action='store_true', default=False, help='only build model and produce geometry file(s)')
|
||
parser.add_argument('--write-processed', action='store_true', default=False, help='write an input file after any Python code and include commands in the original input file have been processed')
|
||
parser.add_argument('--opt-taguchi', action='store_true', default=False, help='optimise parameters using the Taguchi optimisation method')
|
||
args = parser.parse_args()
|
||
numbermodelruns = args.n
|
||
inputdirectory = os.path.dirname(os.path.abspath(args.inputfile)) + os.sep
|
||
inputfile = inputdirectory + os.path.basename(args.inputfile)
|
||
|
||
# Create a separate namespace that users can access in any Python code blocks in the input file
|
||
usernamespace = {'c': c, 'e0': e0, 'm0': m0, 'z0': z0, 'number_model_runs': numbermodelruns, 'inputdirectory': inputdirectory}
|
||
|
||
# Process for Taguchi optimisation
|
||
if args.opt_taguchi:
|
||
if args.benchmark:
|
||
raise GeneralError('Taguchi optimisation should not be used with benchmarking mode')
|
||
from gprMax.optimisation_taguchi import run_opt_sim
|
||
run_opt_sim(args, numbermodelruns, inputfile, usernamespace)
|
||
|
||
# Process for benchmarking simulation
|
||
elif args.benchmark:
|
||
run_benchmark_sim(args, inputfile, usernamespace)
|
||
|
||
# Process for standard simulation
|
||
else:
|
||
# Mixed mode MPI/OpenMP - MPI task farm for models with each model parallelised with OpenMP
|
||
if args.mpi:
|
||
if args.benchmark:
|
||
raise GeneralError('MPI should not be used with benchmarking mode')
|
||
if numbermodelruns == 1:
|
||
raise GeneralError('MPI is not beneficial when there is only one model to run')
|
||
run_mpi_sim(args, numbermodelruns, inputfile, usernamespace)
|
||
# Standard behaviour - models run serially with each model parallelised with OpenMP
|
||
else:
|
||
run_std_sim(args, numbermodelruns, inputfile, usernamespace)
|
||
|
||
print('\nSimulation completed.\n{}\n'.format(68*'*'))
|
||
|
||
|
||
def run_std_sim(args, numbermodelruns, inputfile, usernamespace, optparams=None):
|
||
"""Run standard simulation - models are run one after another and each model is parallelised with OpenMP
|
||
|
||
Args:
|
||
args (dict): Namespace with command line arguments
|
||
numbermodelruns (int): Total number of model runs.
|
||
inputfile (str): Name of the input file to open.
|
||
usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.
|
||
optparams (dict): Optional argument. For Taguchi optimisation it provides the parameters to optimise and their values.
|
||
"""
|
||
|
||
tsimstart = perf_counter()
|
||
for modelrun in range(1, numbermodelruns + 1):
|
||
if optparams: # If Taguchi optimistaion, add specific value for each parameter to optimise for each experiment to user accessible namespace
|
||
tmp = {}
|
||
tmp.update((key, value[modelrun - 1]) for key, value in optparams.items())
|
||
modelusernamespace = usernamespace.copy()
|
||
modelusernamespace.update({'optparams': tmp})
|
||
else:
|
||
modelusernamespace = usernamespace
|
||
run_model(args, modelrun, numbermodelruns, inputfile, modelusernamespace)
|
||
tsimend = perf_counter()
|
||
print('\nTotal simulation time [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tsimend - tsimstart))))
|
||
|
||
|
||
def run_benchmark_sim(args, inputfile, usernamespace):
|
||
"""Run standard simulation in benchmarking mode - models are run one after another and each model is parallelised with OpenMP
|
||
|
||
Args:
|
||
args (dict): Namespace with command line arguments
|
||
inputfile (str): Name of the input file to open.
|
||
usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.
|
||
"""
|
||
|
||
# Number of threads to test - start from max physical CPU cores and divide in half until 1
|
||
thread = psutil.cpu_count(logical=False)
|
||
threads = [thread]
|
||
while not thread%2:
|
||
thread /= 2
|
||
threads.append(int(thread))
|
||
|
||
benchtimes = np.zeros(len(threads))
|
||
|
||
numbermodelruns = len(threads)
|
||
tsimstart = perf_counter()
|
||
for modelrun in range(1, numbermodelruns + 1):
|
||
os.environ['OMP_NUM_THREADS'] = str(threads[modelrun - 1])
|
||
tsolve = run_model(args, modelrun, numbermodelruns, inputfile, usernamespace)
|
||
benchtimes[modelrun - 1] = tsolve
|
||
tsimend = perf_counter()
|
||
|
||
# Save number of threads and benchmarking times to NumPy archive
|
||
threads = np.array(threads)
|
||
np.savez(os.path.splitext(inputfile)[0], threads=threads, benchtimes=benchtimes)
|
||
|
||
print('\nTotal simulation time [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tsimend - tsimstart))))
|
||
|
||
|
||
def run_mpi_sim(args, numbermodelruns, inputfile, usernamespace, optparams=None):
|
||
"""Run mixed mode MPI/OpenMP simulation - MPI task farm for models with each model parallelised with OpenMP
|
||
|
||
Args:
|
||
args (dict): Namespace with command line arguments
|
||
numbermodelruns (int): Total number of model runs.
|
||
inputfile (str): Name of the input file to open.
|
||
usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.
|
||
optparams (dict): Optional argument. For Taguchi optimisation it provides the parameters to optimise and their values.
|
||
"""
|
||
|
||
from mpi4py import MPI
|
||
|
||
# Define MPI message tags
|
||
tags = Enum('tags', {'READY': 0, 'DONE': 1, 'EXIT': 2, 'START': 3})
|
||
|
||
# Initializations and preliminaries
|
||
comm = MPI.COMM_WORLD # get MPI communicator object
|
||
size = comm.size # total number of processes
|
||
rank = comm.rank # rank of this process
|
||
status = MPI.Status() # get MPI status object
|
||
name = MPI.Get_processor_name() # get name of processor/host
|
||
|
||
if rank == 0: # Master process
|
||
modelrun = 1
|
||
numworkers = size - 1
|
||
closedworkers = 0
|
||
print('Master: PID {} on {} using {} workers.'.format(os.getpid(), name, numworkers))
|
||
while closedworkers < numworkers:
|
||
data = comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=status)
|
||
source = status.Get_source()
|
||
tag = status.Get_tag()
|
||
|
||
if tag == tags.READY.value: # Worker is ready, so send it a task
|
||
if modelrun < numbermodelruns + 1:
|
||
comm.send(modelrun, dest=source, tag=tags.START.value)
|
||
print('Master: sending model {} to worker {}.'.format(modelrun, source))
|
||
modelrun += 1
|
||
else:
|
||
comm.send(None, dest=source, tag=tags.EXIT.value)
|
||
|
||
elif tag == tags.DONE.value:
|
||
print('Worker {}: completed.'.format(source))
|
||
|
||
elif tag == tags.EXIT.value:
|
||
print('Worker {}: exited.'.format(source))
|
||
closedworkers += 1
|
||
|
||
else: # Worker process
|
||
print('Worker {}: PID {} on {} requesting {} OpenMP threads.'.format(rank, os.getpid(), name, os.environ.get('OMP_NUM_THREADS')))
|
||
while True:
|
||
comm.send(None, dest=0, tag=tags.READY.value)
|
||
modelrun = comm.recv(source=0, tag=MPI.ANY_TAG, status=status) # Receive a model number to run from the master
|
||
tag = status.Get_tag()
|
||
|
||
# Run a model
|
||
if tag == tags.START.value:
|
||
if optparams: # If Taguchi optimistaion, add specific value for each parameter to optimise for each experiment to user accessible namespace
|
||
tmp = {}
|
||
tmp.update((key, value[modelrun - 1]) for key, value in optparams.items())
|
||
modelusernamespace = usernamespace.copy()
|
||
modelusernamespace.update({'optparams': tmp})
|
||
else:
|
||
modelusernamespace = usernamespace
|
||
|
||
run_model(args, modelrun, numbermodelruns, inputfile, modelusernamespace)
|
||
comm.send(None, dest=0, tag=tags.DONE.value)
|
||
|
||
elif tag == tags.EXIT.value:
|
||
break
|
||
|
||
comm.send(None, dest=0, tag=tags.EXIT.value)
|
||
|
||
|
||
def run_model(args, modelrun, numbermodelruns, inputfile, usernamespace):
|
||
"""Runs a model - processes the input file; builds the Yee cells; calculates update coefficients; runs main FDTD loop.
|
||
|
||
Args:
|
||
args (dict): Namespace with command line arguments
|
||
modelrun (int): Current model run number.
|
||
numbermodelruns (int): Total number of model runs.
|
||
inputfile (str): Name of the input file to open.
|
||
usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.
|
||
|
||
Returns:
|
||
tsolve (int): Length of time (seconds) of main FDTD calculations
|
||
"""
|
||
|
||
# Monitor memory usage
|
||
p = psutil.Process()
|
||
|
||
print('\n{}\n\nModel input file: {}\n'.format(68*'*', inputfile))
|
||
|
||
# Add the current model run to namespace that can be accessed by user in any Python code blocks in input file
|
||
usernamespace['current_model_run'] = modelrun
|
||
print('Constants/variables available for Python scripting: {}\n'.format(usernamespace))
|
||
|
||
# Process any user input Python commands
|
||
processedlines = process_python_include_code(inputfile, usernamespace)
|
||
|
||
# Write a file containing the input commands after Python blocks have been processed
|
||
if args.write_processed:
|
||
write_processed_file(inputfile, modelrun, numbermodelruns, processedlines)
|
||
|
||
# Check validity of command names & that essential commands are present
|
||
singlecmds, multicmds, geometry = check_cmd_names(processedlines)
|
||
|
||
# Initialise an instance of the FDTDGrid class
|
||
G = FDTDGrid()
|
||
G.inputfilename = os.path.split(inputfile)[1]
|
||
G.inputdirectory = usernamespace['inputdirectory']
|
||
|
||
# Create built-in materials
|
||
m = Material(0, 'pec', G)
|
||
m.average = False
|
||
G.materials.append(m)
|
||
m = Material(1, 'free_space', G)
|
||
G.materials.append(m)
|
||
|
||
# Process parameters for commands that can only occur once in the model
|
||
process_singlecmds(singlecmds, G)
|
||
|
||
# Process parameters for commands that can occur multiple times in the model
|
||
process_multicmds(multicmds, G)
|
||
|
||
# Initialise an array for volumetric material IDs (solid), boolean arrays for specifying materials not to be averaged (rigid),
|
||
# an array for cell edge IDs (ID), and arrays for the field components.
|
||
G.initialise_std_arrays()
|
||
|
||
# Process the geometry commands in the order they were given
|
||
tinputprocstart = perf_counter()
|
||
process_geometrycmds(geometry, G)
|
||
tinputprocend = perf_counter()
|
||
print('\nInput file processed in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tinputprocend - tinputprocstart))))
|
||
|
||
# Build the PML and calculate initial coefficients
|
||
build_pmls(G)
|
||
|
||
# Build the model, i.e. set the material properties (ID) for every edge of every Yee cell
|
||
tbuildstart = perf_counter()
|
||
build_electric_components(G.solid, G.rigidE, G.ID, G)
|
||
build_magnetic_components(G.solid, G.rigidH, G.ID, G)
|
||
tbuildend = perf_counter()
|
||
print('\nModel built in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tbuildend - tbuildstart))))
|
||
|
||
# Process any voltage sources (that have resistance) to create a new material at the source location
|
||
for voltagesource in G.voltagesources:
|
||
voltagesource.create_material(G)
|
||
|
||
# Initialise arrays of update coefficients to pass to update functions
|
||
G.initialise_std_updatecoeff_arrays()
|
||
|
||
# Initialise arrays of update coefficients and temporary values if there are any dispersive materials
|
||
if Material.maxpoles != 0:
|
||
G.initialise_dispersive_arrays()
|
||
|
||
# Calculate update coefficients, store in arrays, and list materials in model
|
||
if G.messages:
|
||
print('\nMaterials:\n')
|
||
print('ID\tName\t\tProperties')
|
||
print('{}'.format('-'*50))
|
||
for material in G.materials:
|
||
|
||
# Calculate update coefficients for material
|
||
material.calculate_update_coeffsE(G)
|
||
material.calculate_update_coeffsH(G)
|
||
|
||
# Store all update coefficients together
|
||
G.updatecoeffsE[material.numID, :] = material.CA, material.CBx, material.CBy, material.CBz, material.srce
|
||
G.updatecoeffsH[material.numID, :] = material.DA, material.DBx, material.DBy, material.DBz, material.srcm
|
||
|
||
# Store coefficients for any dispersive materials
|
||
if Material.maxpoles != 0:
|
||
z = 0
|
||
for pole in range(Material.maxpoles):
|
||
G.updatecoeffsdispersive[material.numID, z:z+3] = e0 * material.eqt2[pole], material.eqt[pole], material.zt[pole]
|
||
z += 3
|
||
|
||
if G.messages:
|
||
if material.deltaer and material.tau:
|
||
tmp = 'delta_epsr={}, tau={} secs; '.format(', '.join('{:g}'.format(deltaer) for deltaer in material.deltaer), ', '.join('{:g}'.format(tau) for tau in material.tau))
|
||
else:
|
||
tmp = ''
|
||
if material.average:
|
||
dielectricsmoothing = 'dielectric smoothing permitted.'
|
||
else:
|
||
dielectricsmoothing = 'dielectric smoothing not permitted.'
|
||
print('{:3}\t{:12}\tepsr={:g}, sig={:g} S/m; mur={:g}, sig*={:g} S/m; '.format(material.numID, material.ID, material.er, material.se, material.mr, material.sm) + tmp + dielectricsmoothing)
|
||
|
||
# Check to see if numerical dispersion might be a problem
|
||
resolution = dispersion_check(G)
|
||
if resolution != 0 and max((G.dx, G.dy, G.dz)) > resolution:
|
||
print('\nWARNING: Potential numerical dispersion in the simulation. Check the spatial discretisation against the smallest wavelength present. Suggested resolution should be less than {:g}m'.format(resolution))
|
||
|
||
# Write files for any geometry views
|
||
if not G.geometryviews and args.geometry_only:
|
||
raise GeneralError('No geometry views found.')
|
||
elif G.geometryviews:
|
||
tgeostart = perf_counter()
|
||
for geometryview in G.geometryviews:
|
||
geometryview.write_vtk(modelrun, numbermodelruns, G)
|
||
tgeoend = perf_counter()
|
||
print('\nGeometry file(s) written in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tgeoend - tgeostart))))
|
||
|
||
# Run simulation if not doing only geometry
|
||
if not args.geometry_only:
|
||
|
||
# Prepare any snapshot files
|
||
for snapshot in G.snapshots:
|
||
snapshot.prepare_vtk_imagedata(modelrun, numbermodelruns, G)
|
||
|
||
# Adjust position of sources and receivers if required
|
||
if G.srcstepx > 0 or G.srcstepy > 0 or G.srcstepz > 0:
|
||
for source in itertools.chain(G.hertziandipoles, G.magneticdipoles, G.voltagesources, G.transmissionlines):
|
||
if modelrun == 1:
|
||
if source.xcoord + G.srcstepx * (numbermodelruns - 1) > G.nx or source.ycoord + G.srcstepy * (numbermodelruns - 1) > G.ny or source.zcoord + G.srcstepz * (numbermodelruns - 1) > G.nz:
|
||
raise GeneralError('Source(s) will be stepped to a position outside the domain.')
|
||
source.xcoord += (modelrun - 1) * G.srcstepx
|
||
source.ycoord += (modelrun - 1) * G.srcstepy
|
||
source.zcoord += (modelrun - 1) * G.srcstepz
|
||
if G.rxstepx > 0 or G.rxstepy > 0 or G.rxstepz > 0:
|
||
for receiver in G.rxs:
|
||
if modelrun == 1:
|
||
if receiver.xcoord + G.rxstepx * (numbermodelruns - 1) > G.nx or receiver.ycoord + G.rxstepy * (numbermodelruns - 1) > G.ny or receiver.zcoord + G.rxstepz * (numbermodelruns - 1) > G.nz:
|
||
raise GeneralError('Receiver(s) will be stepped to a position outside the domain.')
|
||
receiver.xcoord += (modelrun - 1) * G.rxstepx
|
||
receiver.ycoord += (modelrun - 1) * G.rxstepy
|
||
receiver.zcoord += (modelrun - 1) * G.rxstepz
|
||
|
||
# Prepare output file
|
||
inputfileparts = os.path.splitext(inputfile)
|
||
if numbermodelruns == 1:
|
||
outputfile = inputfileparts[0] + '.out'
|
||
else:
|
||
outputfile = inputfileparts[0] + str(modelrun) + '.out'
|
||
sys.stdout.write('\nOutput to file: {}\n'.format(outputfile))
|
||
sys.stdout.flush()
|
||
f = prepare_hdf5(outputfile, G)
|
||
|
||
##################################
|
||
# Main FDTD calculation loop #
|
||
##################################
|
||
tsolvestart = perf_counter()
|
||
# Absolute time
|
||
abstime = 0
|
||
|
||
for timestep in range(G.iterations):
|
||
if timestep == 0:
|
||
tstepstart = perf_counter()
|
||
|
||
# Write field outputs to file
|
||
write_hdf5(f, timestep, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz, G)
|
||
|
||
# Write any snapshots to file
|
||
for snapshot in G.snapshots:
|
||
if snapshot.time == timestep + 1:
|
||
snapshot.write_vtk_imagedata(G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz, G)
|
||
|
||
# Update electric field components
|
||
if Material.maxpoles == 0: # All materials are non-dispersive so do standard update
|
||
update_electric(G.nx, G.ny, G.nz, G.nthreads, G.updatecoeffsE, G.ID, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz)
|
||
elif Material.maxpoles == 1: # If there are any dispersive materials do 1st part of dispersive update (it is split into two parts as it requires present and updated electric field values).
|
||
update_electric_dispersive_1pole_A(G.nx, G.ny, G.nz, G.nthreads, G.updatecoeffsE, G.updatecoeffsdispersive, G.ID, G.Tx, G.Ty, G.Tz, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz)
|
||
elif Material.maxpoles > 1:
|
||
update_electric_dispersive_multipole_A(G.nx, G.ny, G.nz, G.nthreads, Material.maxpoles, G.updatecoeffsE, G.updatecoeffsdispersive, G.ID, G.Tx, G.Ty, G.Tz, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz)
|
||
|
||
# Update electric field components with the PML correction
|
||
update_electric_pml(G)
|
||
|
||
# Update electric field components from sources
|
||
for voltagesource in G.voltagesources:
|
||
voltagesource.update_electric(abstime, G.updatecoeffsE, G.ID, G.Ex, G.Ey, G.Ez, G)
|
||
for transmissionline in G.transmissionlines:
|
||
transmissionline.update_electric(abstime, G.Ex, G.Ey, G.Ez, G)
|
||
for hertziandipole in G.hertziandipoles: # Update any Hertzian dipole sources last
|
||
hertziandipole.update_electric(abstime, G.updatecoeffsE, G.ID, G.Ex, G.Ey, G.Ez, G)
|
||
|
||
# If there are any dispersive materials do 2nd part of dispersive update (it is split into two parts as it requires present and updated electric field values). Therefore it can only be completely updated after the electric field has been updated by the PML and source updates.
|
||
if Material.maxpoles == 1:
|
||
update_electric_dispersive_1pole_B(G.nx, G.ny, G.nz, G.nthreads, G.updatecoeffsdispersive, G.ID, G.Tx, G.Ty, G.Tz, G.Ex, G.Ey, G.Ez)
|
||
elif Material.maxpoles > 1:
|
||
update_electric_dispersive_multipole_B(G.nx, G.ny, G.nz, G.nthreads, Material.maxpoles, G.updatecoeffsdispersive, G.ID, G.Tx, G.Ty, G.Tz, G.Ex, G.Ey, G.Ez)
|
||
|
||
# Increment absolute time value
|
||
abstime += 0.5 * G.dt
|
||
|
||
# Update magnetic field components
|
||
update_magnetic(G.nx, G.ny, G.nz, G.nthreads, G.updatecoeffsH, G.ID, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz)
|
||
|
||
# Update magnetic field components with the PML correction
|
||
update_magnetic_pml(G)
|
||
|
||
# Update magnetic field components from sources
|
||
for transmissionline in G.transmissionlines:
|
||
transmissionline.update_magnetic(abstime, G.Hx, G.Hy, G.Hz, G)
|
||
for magneticdipole in G.magneticdipoles:
|
||
magneticdipole.update_magnetic(abstime, G.updatecoeffsH, G.ID, G.Hx, G.Hy, G.Hz, G)
|
||
|
||
# Increment absolute time value
|
||
abstime += 0.5 * G.dt
|
||
|
||
# Calculate time for two iterations, used to estimate overall runtime
|
||
if timestep == 1:
|
||
tstepend = perf_counter()
|
||
runtime = datetime.timedelta(seconds=int((tstepend - tstepstart) / 2 * G.iterations))
|
||
sys.stdout.write('Estimated runtime [HH:MM:SS]: {}\n'.format(runtime))
|
||
sys.stdout.write('Solving for model run {} of {}...\n'.format(modelrun, numbermodelruns))
|
||
sys.stdout.flush()
|
||
elif timestep > 1:
|
||
update_progress((timestep + 1) / G.iterations)
|
||
|
||
# Close output file
|
||
f.close()
|
||
|
||
tsolveend = perf_counter()
|
||
print('\n\nSolving took [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tsolveend - tsolvestart))))
|
||
print('Peak memory (approx) used: {}'.format(human_size(p.memory_info().rss)))
|
||
|
||
return int(tsolveend - tsolvestart)
|
||
|
||
|
||
|
||
|