文件
gprMax/gprMax/grid.py
2019-03-07 16:43:13 +00:00

465 行
18 KiB
Python

# Copyright (C) 2015-2019: The University of Edinburgh
# Authors: Craig Warren and Antonis Giannopoulos
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
from collections import OrderedDict
from colorama import init
from colorama import Fore
from colorama import Style
init()
import numpy as np
np.seterr(invalid='raise')
from gprMax.constants import c
from gprMax.constants import floattype
from gprMax.constants import complextype
from gprMax.exceptions import GeneralError
from gprMax.materials import Material
from gprMax.pml import PML
from gprMax.utilities import fft_power
from gprMax.utilities import human_size
from gprMax.utilities import round_value
class Grid(object):
"""Generic grid/mesh."""
def __init__(self, grid):
self.nx = grid.shape[0]
self.ny = grid.shape[1]
self.nz = grid.shape[2]
self.dx = 1
self.dy = 1
self.dz = 1
self.i_max = self.nx - 1
self.j_max = self.ny - 1
self.k_max = self.nz - 1
self.grid = grid
def n_edges(self):
i = self.nx
j = self.ny
k = self.nz
e = (i * j * (k - 1)) + (j * k * (i - 1)) + (i * k * (j - 1))
return e
def n_nodes(self):
return self.nx * self.ny * self.nz
def n_cells(self):
return (self.nx - 1) * (self.ny - 1) * (self.nz - 1)
def get(self, i, j, k):
return self.grid[i, j, k]
def within_bounds(self, **kwargs):
for co, val in kwargs.items():
if val < 0 or val > getattr(self, 'n' + co):
raise ValueError(co)
def calculate_coord(self, coord, val):
co = round_value(float(val) / getattr(self, 'd' + coord))
return co
class FDTDGrid(Grid):
"""
Holds attributes associated with the entire grid. A convenient
way for accessing regularly used parameters.
"""
def __init__(self):
self.inputfilename = ''
self.inputdirectory = ''
self.outputdirectory = ''
self.title = ''
self.messages = True
self.progressbars = self.messages
self.memoryusage = 0
# Get information about host machine
self.hostinfo = None
# CPU - OpenMP threads
self.nthreads = 0
# GPU
# Threads per block - electric and magnetic field updates
self.tpb = (256, 1, 1)
# GPU object
self.gpu = None
# Copy snapshot data from GPU to CPU during simulation
# N.B. This will happen if the requested snapshots are too large to fit
# on the memory of the GPU. If True this will slow performance significantly
self.snapsgpu2cpu = False
# Threshold (dB) down from maximum power (0dB) of main frequency used
# to calculate highest frequency for numerical dispersion analysis
self.highestfreqthres = 40
# Maximum allowable percentage physical phase-velocity phase error
self.maxnumericaldisp = 2
# Minimum grid sampling of smallest wavelength for physical wave propagation
self.mingridsampling = 3
self.nx = 0
self.ny = 0
self.nz = 0
self.dx = 0
self.dy = 0
self.dz = 0
self.dt = 0
self.mode = None
self.iterations = 0
self.timewindow = 0
# Ordered dictionary required so that PMLs are always updated in the
# same order. The order itself does not matter, however, if must be the
# same from model to model otherwise the numerical precision from adding
# the PML corrections will be different.
self.pmlthickness = OrderedDict((key, 10) for key in PML.boundaryIDs)
self.cfs = []
self.pmls = []
self.pmlformulation = 'HORIPML'
self.materials = []
self.mixingmodels = []
self.averagevolumeobjects = True
self.fractalvolumes = []
self.geometryviews = []
self.geometryobjectswrite = []
self.waveforms = []
self.voltagesources = []
self.hertziandipoles = []
self.magneticdipoles = []
self.transmissionlines = []
self.rxs = []
self.srcsteps = [0, 0, 0]
self.rxsteps = [0, 0, 0]
self.snapshots = []
def initialise_geometry_arrays(self):
"""
Initialise an array for volumetric material IDs (solid);
boolean arrays for specifying whether materials can have dielectric smoothing (rigid);
and an array for cell edge IDs (ID).
Solid and ID arrays are initialised to free_space (one);
rigid arrays to allow dielectric smoothing (zero).
"""
self.solid = np.ones((self.nx, self.ny, self.nz), dtype=np.uint32)
self.rigidE = np.zeros((12, self.nx, self.ny, self.nz), dtype=np.int8)
self.rigidH = np.zeros((6, self.nx, self.ny, self.nz), dtype=np.int8)
self.ID = np.ones((6, self.nx + 1, self.ny + 1, self.nz + 1), dtype=np.uint32)
self.IDlookup = {'Ex': 0, 'Ey': 1, 'Ez': 2, 'Hx': 3, 'Hy': 4, 'Hz': 5}
def initialise_field_arrays(self):
"""Initialise arrays for the electric and magnetic field components."""
self.Ex = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=floattype)
self.Ey = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=floattype)
self.Ez = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=floattype)
self.Hx = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=floattype)
self.Hy = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=floattype)
self.Hz = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=floattype)
def initialise_std_update_coeff_arrays(self):
"""Initialise arrays for storing update coefficients."""
self.updatecoeffsE = np.zeros((len(self.materials), 5), dtype=floattype)
self.updatecoeffsH = np.zeros((len(self.materials), 5), dtype=floattype)
def initialise_dispersive_arrays(self):
"""Initialise arrays for storing coefficients when there are dispersive materials present."""
self.Tx = np.zeros((Material.maxpoles, self.nx + 1, self.ny + 1, self.nz + 1), dtype=complextype)
self.Ty = np.zeros((Material.maxpoles, self.nx + 1, self.ny + 1, self.nz + 1), dtype=complextype)
self.Tz = np.zeros((Material.maxpoles, self.nx + 1, self.ny + 1, self.nz + 1), dtype=complextype)
self.updatecoeffsdispersive = np.zeros((len(self.materials), 3 * Material.maxpoles), dtype=complextype)
def memory_estimate_basic(self):
"""Estimate the amount of memory (RAM) required to run a model."""
stdoverhead = 50e6
solidarray = self.nx * self.ny * self.nz * np.dtype(np.uint32).itemsize
# 12 x rigidE array components + 6 x rigidH array components
rigidarrays = (12 + 6) * self.nx * self.ny * self.nz * np.dtype(np.int8).itemsize
# 6 x field arrays + 6 x ID arrays
fieldarrays = (6 + 6) * (self.nx + 1) * (self.ny + 1) * (self.nz + 1) * np.dtype(floattype).itemsize
# PML arrays
pmlarrays = 0
for (k, v) in self.pmlthickness.items():
if v > 0:
if 'x' in k:
pmlarrays += ((v + 1) * self.ny * (self.nz + 1))
pmlarrays += ((v + 1) * (self.ny + 1) * self.nz)
pmlarrays += (v * self.ny * (self.nz + 1))
pmlarrays += (v * (self.ny + 1) * self.nz)
elif 'y' in k:
pmlarrays += (self.nx * (v + 1) * (self.nz + 1))
pmlarrays += ((self.nx + 1) * (v + 1) * self.nz)
pmlarrays += ((self.nx + 1) * v * self.nz)
pmlarrays += (self.nx * v * (self.nz + 1))
elif 'z' in k:
pmlarrays += (self.nx * (self.ny + 1) * (v + 1))
pmlarrays += ((self.nx + 1) * self.ny * (v + 1))
pmlarrays += ((self.nx + 1) * self.ny * v)
pmlarrays += (self.nx * (self.ny + 1) * v)
self.memoryusage = int(stdoverhead + fieldarrays + solidarray + rigidarrays + pmlarrays)
def memory_check(self, snapsmemsize=0):
"""Check if the required amount of memory (RAM) is available on the host and GPU if specified.
Args:
snapsmemsize (int): amount of memory (bytes) required to store all requested snapshots
"""
# Check if model can be built and/or run on host
if self.memoryusage > self.hostinfo['ram']:
raise GeneralError('Memory (RAM) required ~{} exceeds {} detected!\n'.format(human_size(self.memoryusage), human_size(self.hostinfo['ram'], a_kilobyte_is_1024_bytes=True)))
# Check if model can be run on specified GPU if required
if self.gpu is not None:
if self.memoryusage - snapsmemsize > self.gpu.totalmem:
raise GeneralError('Memory (RAM) required ~{} exceeds {} detected on specified {} - {} GPU!\n'.format(human_size(self.memoryusage), human_size(self.gpu.totalmem, a_kilobyte_is_1024_bytes=True), self.gpu.deviceID, self.gpu.name))
# If the required memory without the snapshots will fit on the GPU then transfer and store snaphots on host
if snapsmemsize != 0 and self.memoryusage - snapsmemsize < self.gpu.totalmem:
self.snapsgpu2cpu = True
def gpu_set_blocks_per_grid(self):
"""Set the blocks per grid size used for updating the electric and magnetic field arrays on a GPU."""
self.bpg = (int(np.ceil(((self.nx + 1) * (self.ny + 1) * (self.nz + 1)) / self.tpb[0])), 1, 1)
def gpu_initialise_arrays(self):
"""Initialise standard field arrays on GPU."""
import pycuda.gpuarray as gpuarray
self.ID_gpu = gpuarray.to_gpu(self.ID)
self.Ex_gpu = gpuarray.to_gpu(self.Ex)
self.Ey_gpu = gpuarray.to_gpu(self.Ey)
self.Ez_gpu = gpuarray.to_gpu(self.Ez)
self.Hx_gpu = gpuarray.to_gpu(self.Hx)
self.Hy_gpu = gpuarray.to_gpu(self.Hy)
self.Hz_gpu = gpuarray.to_gpu(self.Hz)
def gpu_initialise_dispersive_arrays(self):
"""Initialise dispersive material coefficient arrays on GPU."""
import pycuda.gpuarray as gpuarray
self.Tx_gpu = gpuarray.to_gpu(self.Tx)
self.Ty_gpu = gpuarray.to_gpu(self.Ty)
self.Tz_gpu = gpuarray.to_gpu(self.Tz)
self.updatecoeffsdispersive_gpu = gpuarray.to_gpu(self.updatecoeffsdispersive)
def dispersion_analysis(G):
"""
Analysis of numerical dispersion (Taflove et al, 2005, p112) -
worse case of maximum frequency and minimum wavelength
Args:
G (class): Grid class instance - holds essential parameters describing the model.
Returns:
results (dict): Results from dispersion analysis
"""
# Physical phase velocity error (percentage); grid sampling density;
# material with maximum permittivity; maximum significant frequency; error message
results = {'deltavp': False, 'N': False, 'material': False, 'maxfreq': [], 'error': ''}
# Find maximum significant frequency
if G.waveforms:
for waveform in G.waveforms:
if waveform.type == 'sine' or waveform.type == 'contsine':
results['maxfreq'].append(4 * waveform.freq)
elif waveform.type == 'impulse':
results['error'] = 'impulse waveform used.'
else:
# User-defined waveform
if waveform.type == 'user':
iterations = G.iterations
# Built-in waveform
else:
# Time to analyse waveform - 4*pulse_width as using entire
# time window can result in demanding FFT
waveform.calculate_coefficients()
iterations = round_value(4 * waveform.chi / G.dt)
if iterations > G.iterations:
iterations = G.iterations
waveformvalues = np.zeros(G.iterations)
for iteration in range(G.iterations):
waveformvalues[iteration] = waveform.calculate_value(iteration * G.dt, G.dt)
# Ensure source waveform is not being overly truncated before attempting any FFT
if np.abs(waveformvalues[-1]) < np.abs(np.amax(waveformvalues)) / 100:
# FFT
freqs, power = fft_power(waveformvalues, G.dt)
# Get frequency for max power
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
# Set maximum frequency to a threshold drop from maximum power, ignoring DC value
try:
freqthres = np.where(power[freqmaxpower:] < -G.highestfreqthres)[0][0] + freqmaxpower
results['maxfreq'].append(freqs[freqthres])
except ValueError:
results['error'] = 'unable to calculate maximum power from waveform, most likely due to undersampling.'
# Ignore case where someone is using a waveform with zero amplitude, i.e. on a receiver
elif waveform.amp == 0:
pass
# If waveform is truncated don't do any further analysis
else:
results['error'] = 'waveform does not fit within specified time window and is therefore being truncated.'
else:
results['error'] = 'no waveform detected.'
if results['maxfreq']:
results['maxfreq'] = max(results['maxfreq'])
# Find minimum wavelength (material with maximum permittivity)
maxer = 0
matmaxer = ''
for x in G.materials:
if x.se != float('inf'):
er = x.er
# If there are dispersive materials calculate the complex relative permittivity
# at maximum frequency and take the real part
if x.poles > 0:
er = x.calculate_er(results['maxfreq'])
er = er.real
if er > maxer:
maxer = er
matmaxer = x.ID
results['material'] = next(x for x in G.materials if x.ID == matmaxer)
# Minimum velocity
minvelocity = c / np.sqrt(maxer)
# Minimum wavelength
minwavelength = minvelocity / results['maxfreq']
# Maximum spatial step
if '3D' in G.mode:
delta = max(G.dx, G.dy, G.dz)
elif '2D' in G.mode:
if G.nx == 1:
delta = max(G.dy, G.dz)
elif G.ny == 1:
delta = max(G.dx, G.dz)
elif G.nz == 1:
delta = max(G.dx, G.dy)
# Courant stability factor
S = (c * G.dt) / delta
# Grid sampling density
results['N'] = minwavelength / delta
# Check grid sampling will result in physical wave propagation
if int(np.floor(results['N'])) >= G.mingridsampling:
# Numerical phase velocity
vp = np.pi / (results['N'] * np.arcsin((1 / S) * np.sin((np.pi * S) / results['N'])))
# Physical phase velocity error (percentage)
results['deltavp'] = (((vp * c) - c) / c) * 100
# Store rounded down value of grid sampling density
results['N'] = int(np.floor(results['N']))
return results
def get_other_directions(direction):
"""Return the two other directions from x, y, z given a single direction
Args:
direction (str): Component x, y or z
Returns:
(tuple): Two directions from x, y, z
"""
directions = {'x': ('y', 'z'), 'y': ('x', 'z'), 'z': ('x', 'y')}
return directions[direction]
def Ix(x, y, z, Hx, Hy, Hz, G):
"""Calculates the x-component of current at a grid position.
Args:
x, y, z (float): Coordinates of position in grid.
Hx, Hy, Hz (memory view): numpy array of magnetic field values.
G (class): Grid class instance - holds essential parameters describing the model.
"""
if y == 0 or z == 0:
Ix = 0
else:
Ix = G.dy * (Hy[x, y, z - 1] - Hy[x, y, z]) + G.dz * (Hz[x, y, z] - Hz[x, y - 1, z])
return Ix
def Iy(x, y, z, Hx, Hy, Hz, G):
"""Calculates the y-component of current at a grid position.
Args:
x, y, z (float): Coordinates of position in grid.
Hx, Hy, Hz (memory view): numpy array of magnetic field values.
G (class): Grid class instance - holds essential parameters describing the model.
"""
if x == 0 or z == 0:
Iy = 0
else:
Iy = G.dx * (Hx[x, y, z] - Hx[x, y, z - 1]) + G.dz * (Hz[x - 1, y, z] - Hz[x, y, z])
return Iy
def Iz(x, y, z, Hx, Hy, Hz, G):
"""Calculates the z-component of current at a grid position.
Args:
x, y, z (float): Coordinates of position in grid.
Hx, Hy, Hz (memory view): numpy array of magnetic field values.
G (class): Grid class instance - holds essential parameters describing the model.
"""
if x == 0 or y == 0:
Iz = 0
else:
Iz = G.dx * (Hx[x, y - 1, z] - Hx[x, y, z]) + G.dy * (Hy[x, y, z] - Hy[x - 1, y, z])
return Iz