文件
gprMax/user_libs/DebyeFit/Debye_Fit.py
2021-07-31 23:33:09 +02:00

700 行
31 KiB
Python
原始文件 Blame 文件历史

此文件含有不可见的 Unicode 字符

此文件含有人类无法区分的不可见的 Unicode 字符,但可以由计算机进行不同的处理。 如果您是想特意这样的,可以安全地忽略该警告。 使用 Escape 按钮显示他们。

此文件含有可能会与其他字符混淆的 Unicode 字符。 如果您是想特意这样的,可以安全地忽略该警告。 使用 Escape 按钮显示他们。

# Authors: Iraklis Giannakis, and Sylwia Majchrowska
# E-mail: i.giannakis@ed.ac.uk
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
import os
from matplotlib import pylab as plt
import matplotlib.gridspec as gridspec
from pathlib import Path
import sys
import scipy.interpolate
import warnings
from optimization import *
class Relaxation(object):
""" Create Relaxation function object for complex material.
:param sigma: The conductivity (Siemens/metre).
:type sigma: float, non-optional
:param mu: The relative permeability.
:type mu: float, non-optional
:param mu_sigma: The magnetic loss.
:type mu_sigma: float, non-optional
:param material_name: A string containing the given name of
the material (e.g. "Clay").
:type material_name: str, non-optional
:param: number_of_debye_poles: Number of Debye functions used to
approximate the given electric
permittivity.
:type number_of_debye_poles: int, optional
:param: fn: Number of frequency points in frequency grid.
:type fn: int, optional (Default: 50)
:param plot: if True will plot the actual and the approximated
permittivity at the end (neglected as default: False).
:type plot: bool, optional, default:False
:param save: if True will save approximated material parameters
(not neglected as default: True).
:type save: bool, optional, default:True
:param optimizer: chosen optimization method:
Hybrid Particle Swarm-Damped Least-Squares (PSO_DLS),
Dual Annealing (DA) or Differential Evolution (DE)
(Default: PSO_DLS).
:type optimizer: Optimizer class, optional
:param optimizer_options: Additional keyword arguments passed to
optimizer class (Default: empty dict).
:type optimizer_options: dict, optional, default: empty dict
"""
def __init__(self, sigma, mu, mu_sigma,
material_name, f_n=50,
number_of_debye_poles=-1,
plot=True, save=False,
optimizer=PSO_DLS,
optimizer_options={}):
self.name = 'Relaxation function'
self.params = {}
self.number_of_debye_poles = number_of_debye_poles
self.f_n = f_n
self.sigma = sigma
self.mu = mu
self.mu_sigma = mu_sigma
self.material_name = material_name
self.plot = plot
self.save = save
self.optimizer = optimizer(**optimizer_options)
def set_freq(self, f_min, f_max, f_n=50):
""" Interpolate frequency vector using n equally logarithmicaly spaced frequencies.
Args:
f_min (float): First bound of the frequency range
used to approximate the given function (Hz).
f_max (float): Second bound of the frequency range
used to approximate the given function (Hz).
f_n (int): Number of frequency points in frequency grid
(Default: 50).
Note:
f_min and f_max must satisfied f_min < f_max
"""
if abs(f_min - f_max) > 1e12:
warnings.warn(f'The chosen range is realy big. '
f'Consider setting greater number of points '
f'on the frequency grid!')
self.freq = np.logspace(np.log10(f_min),
np.log10(f_max),
int(f_n))
def check_inputs(self):
""" Check the validity of the inputs. """
try:
d = [float(i) for i in
[self.number_of_debye_poles,
self.sigma, self.mu, self.mu_sigma]]
except ValueError:
sys.exit("The inputs should be numeric.")
if not isinstance(self.number_of_debye_poles, int):
sys.exit("The number of Debye poles must be integer.")
if (np.array(d[1:]) < 0).sum() != 0:
sys.exit("The inputs should be positive.")
def calculation(self):
""" Approximate the given relaxation function
(Havriliak-Negami function, Crim, Jonscher) or based on raw data.
"""
raise NotImplementedError()
def print_info(self):
"""Readable string of parameters for given approximation settings.
Returns:
s (str): Info about chosen function and its parameters.
"""
print(f"Approximating {self.name}"
f" using {self.number_of_debye_poles} Debye poles")
print(f"{self.name} parameters: ")
s = ''
for k, v in self.params.items():
s += f"{k:10s} = {v}\n"
print(s)
return f'{self.name}:\n{s}'
def optimize(self):
""" Calling the main optimisation module with defined lower and upper boundaries of search.
Returns:
tau (ndarray): The optimised relaxation times.
weights (ndarray): Resulting optimised weights for the given relaxation times.
ee (float): Average error between the actual and the approximated real part.
rl (ndarray): Real parts of chosen relaxation function
for given frequency points.
im (ndarray): Imaginary parts of chosen relaxation function
for given frequency points.
"""
# Define the lower and upper boundaries of search
lb = np.full(self.number_of_debye_poles,
-np.log10(np.max(self.freq)) - 3)
ub = np.full(self.number_of_debye_poles,
-np.log10(np.min(self.freq)) + 3)
# Call optimizer to minimize the cost function
tau, weights, ee, rl, im = self.optimizer.fit(func=self.optimizer.cost_function,
lb=lb, ub=ub,
funckwargs={'rl': self.rl,
'im': self.im,
'freq': self.freq}
)
return tau, weights, ee, rl, im
def run(self):
""" Solve the problem described by the given relaxation function
(Havriliak-Negami function, Crim, Jonscher)
or data given from a text file.
Returns:
avg_err (float): average fractional error
for relative permittivity (sum)
properties (list(str)): Given material nad Debye expnasion parameters
in a gprMax format.
"""
# Check the validity of the inputs
self.check_inputs()
# Print information about chosen approximation settings
self.print_info()
# Calculate both real and imaginary parts
# for the frequencies included in the vector freq
q = self.calculation()
# Set the real and the imaginary part of the relaxation function
self.rl, self.im = q.real, q.imag
if self.number_of_debye_poles == -1:
print("\n#########",
"Try to automaticaly fit number of Debye poles, up to 20!",
"##########\n", sep="")
error = np.infty # artificial best error starting value
self.number_of_debye_poles = 1
iteration = 1
# stop increasing number of Debye poles if error is smaller then 5%
# or 20 debye poles is reached
while error > 5 and iteration < 21:
# Calling the main optimisation module
tau, weights, ee, rl, im = self.optimize()
err_real, err_imag = self.error(rl + ee, im)
error = err_real + err_imag
self.number_of_debye_poles += 1
iteration += 1
else:
# Calling the main optimisation module
# for choosen number of debye poles
# if one of the weights is negative increase the stabiliser
# and repeat the optimisation
tau, weights, ee, rl, im = self.optimize()
err_real, err_imag = self.error(rl + ee, im)
# Print the results in gprMax format style
properties = self.print_output(tau, weights, ee)
print(f'The average fractional error for:\n'
f'- real part: {err_real}\n'
f'- imaginary part: {err_imag}\n')
if self.save:
self.save_result(properties)
# Plot the actual and the approximate dielectric properties
if self.plot:
self.plot_result(rl + ee, im)
return err_real + err_imag, properties
def print_output(self, tau, weights, ee):
""" Print out the resulting Debye parameters in a gprMax format.
Args:
tau (ndarray): The best known position form optimization module
(optimal design).
weights (ndarray): Resulting optimised weights for the given relaxation times.
ee (float): Average error between the actual and the approximated real part.
Returns:
material_prop (list(str)): Given material nad Debye expnasion parameters
in a gprMax format.
"""
print("Debye expansion parameters: ")
print(f" |{'e_inf':^14s}|{'De':^14s}|{'log(tau_0)':^25s}|")
print("_" * 65)
for i in range(0, len(tau)):
print("Debye {0:}|{1:^14.5f}|{2:^14.5f}|{3:^25.5f}|"
.format(i + 1, ee/len(tau), weights[i],
tau[i]))
print("_" * 65)
# Print the Debye expnasion in a gprMax format
material_prop = []
material_prop.append("#material: {} {} {} {} {}\n".format(ee, self.sigma,
self.mu,
self.mu_sigma,
self.material_name))
print(material_prop[0], end="")
dispersion_prop = "#add_dispersion_debye: {}".format(len(tau))
for i in range(len(tau)):
dispersion_prop += " {} {}".format(weights[i], 10**tau[i])
dispersion_prop += " {}".format(self.material_name)
print(dispersion_prop)
material_prop.append(dispersion_prop + '\n')
return material_prop
def plot_result(self, rl_exp, im_exp):
""" Plot the actual and the approximated electric permittivity,
along with relative error for real and imaginary parts
using a semilogarithm X axes.
Args:
rl_exp (ndarray): Real parts of optimised Debye expansion
for given frequency points (plus average error).
im_exp (ndarray): Imaginary parts of optimised Debye expansion
for given frequency points.
"""
plt.close("all")
fig = plt.figure(figsize=(16,8), tight_layout=True)
gs = gridspec.GridSpec(2, 1)
ax = fig.add_subplot(gs[0])
ax.grid(b=True, which="major", linewidth=0.2, linestyle="--")
ax.semilogx(self.freq * 1e-6, rl_exp, "b-", linewidth=2.0,
label="Debye Expansion: Real part")
ax.semilogx(self.freq * 1e-6, -im_exp, "k-", linewidth=2.0,
label="Debye Expansion: Imaginary part")
ax.semilogx(self.freq * 1e-6, self.rl, "r.",
linewidth=2.0, label=f"{self.name}: Real part")
ax.semilogx(self.freq * 1e-6, -self.im, "g.", linewidth=2.0,
label=f"{self.name}: Imaginary part")
ax.set_ylim([-1, np.max(np.concatenate([self.rl, -self.im])) + 1])
ax.legend()
ax.set_xlabel("Frequency (MHz)")
ax.set_ylabel("Relative permittivity")
ax = fig.add_subplot(gs[1])
ax.grid(b=True, which="major", linewidth=0.2, linestyle="--")
ax.semilogx(self.freq * 1e-6, (rl_exp - self.rl)/self.rl * 100, "b-", linewidth=2.0,
label="Real part")
ax.semilogx(self.freq * 1e-6, (-im_exp + self.im)/self.rl * 100, "k-", linewidth=2.0,
label="Imaginary part")
ax.legend()
ax.set_xlabel("Frequency (MHz)")
ax.set_ylabel("Approximation error (%)")
plt.show()
def error(self, rl_exp, im_exp):
""" Calculate the average fractional error separately for
relative permittivity (real part) and conductivity (imaginary part)
Args:
rl_exp (ndarray): Real parts of optimised Debye expansion
for given frequency points (plus average error).
im_exp (ndarray): Imaginary parts of optimised Debye expansion
for given frequency points.
Returns:
avg_err_real (float): average fractional error
for relative permittivity (real part)
avg_err_imag (float): average fractional error
for conductivity (imaginary part)
"""
avg_err_real = np.sum(np.abs((rl_exp - self.rl)/self.rl) * 100)/len(rl_exp)
avg_err_imag = np.sum(np.abs((-im_exp + self.im)/self.im) * 100)/len(im_exp)
return avg_err_real, avg_err_imag
@staticmethod
def save_result(output, fdir="../materials"):
""" Save the resulting Debye parameters in a gprMax format.
Args:
output (list(str)): Material and resulting Debye parameters
in a gprMax format.
fdir (str): Path to saving directory.
"""
if fdir != "../materials" and os.path.isdir(fdir):
file_path = os.path.join(fdir, "my_materials.txt")
elif os.path.isdir("../materials"):
file_path = os.path.join("../materials",
"my_materials.txt")
elif os.path.isdir("materials"):
file_path = os.path.join("materials",
"my_materials.txt")
elif os.path.isdir("user_libs/materials"):
file_path = os.path.join("user_libs", "materials",
"my_materials.txt")
else:
sys.exit("Cannot save material properties "
f"in {os.path.join(fdir, 'my_materials.txt')}!")
fileH = open(file_path, "a")
fileH.write(f"## {output[0].split(' ')[-1]}")
fileH.writelines(output)
fileH.write("\n")
fileH.close()
print(f"Material properties save at: {file_path}")
class HavriliakNegami(Relaxation):
""" Approximate a given Havriliak-Negami function
Havriliak-Negami function = ε_∞ + Δ‎ε / (1 + (2πfjτ)**α)**β,
where f is the frequency in Hz.
:param f_min: First bound of the frequency range
used to approximate the given function (Hz).
:type f_min: float
:param f_max: Second bound of the frequency range
used to approximate the given function (Hz).
:type f_max: float
:param e_inf: The real relative permittivity at infinity frequency
:type e_inf: float
:param alpha: Real positive float number which varies 0 < alpha < 1.
For alpha = 1 and beta !=0 & beta !=1 Havriliak-Negami
transforms to Cole-Davidson function.
:type alpha: float
:param beta: Real positive float number which varies 0 < beta < 1.
For beta = 1 and alpha !=0 & alpha !=1 Havriliak-Negami
transforms to Cole-Cole function.
:type beta: float
:param de: The difference of relative permittivity at infinite frequency
and the relative permittivity at zero frequency.
:type de: float
:param tau_0: Real positive float number, tau_0 is the relaxation time.
:type tau_0: float
"""
def __init__(self, f_min, f_max,
alpha, beta, e_inf, de, tau_0,
sigma, mu, mu_sigma, material_name,
number_of_debye_poles=-1, f_n=50,
plot=False, save=False,
optimizer=PSO_DLS,
optimizer_options={}):
super(HavriliakNegami, self).__init__(sigma=sigma, mu=mu, mu_sigma=mu_sigma,
material_name=material_name, f_n=f_n,
number_of_debye_poles=number_of_debye_poles,
plot=plot, save=save,
optimizer=optimizer,
optimizer_options=optimizer_options)
self.name = 'Havriliak-Negami function'
# Place the lower frequency bound at f_min and the upper frequency bound at f_max
if f_min > f_max:
self.f_min, self.f_max = f_max, f_min
else:
self.f_min, self.f_max = f_min, f_max
# Choosing n frequencies logarithmicaly equally spaced between the bounds given
self.set_freq(self.f_min, self.f_max, self.f_n)
self.e_inf, self.alpha, self.beta, self.de, self.tau_0 = e_inf, alpha, beta, de, tau_0
self.params = {'f_min':self.f_min, 'f_max':self.f_max,
'eps_inf':self.e_inf, 'Delta_eps':self.de, 'tau_0':self.tau_0,
'alpha':self.alpha, 'beta':self.beta}
def check_inputs(self):
""" Check the validity of the Havriliak Negami model's inputs. """
super(HavriliakNegami, self).check_inputs()
try:
d = [float(i) for i in self.params.values()]
except ValueError:
sys.exit("The inputs should be numeric.")
if (np.array(d) < 0).sum() != 0:
sys.exit("The inputs should be positive.")
if self.alpha > 1:
sys.exit("Alpha value must range between 0-1 (0 <= alpha <= 1)")
if self.beta > 1:
sys.exit("Beta value must range between 0-1 (0 <= beta <= 1)")
if self.f_min == self.f_max:
sys.exit("Null frequency range")
def calculation(self):
"""Calculates the Havriliak-Negami function for
the given parameters."""
return self.e_inf + self.de / (
1 + (1j * 2 * np.pi *
self.freq * self.tau_0)**self.alpha
)**self.beta
class Jonscher(Relaxation):
""" Approximate a given Jonsher function
Jonscher function = ε_∞ - ap * (-1j * 2πf / omegap)**n_p,
where f is the frequency in Hz
:param f_min: First bound of the frequency range
used to approximate the given function (Hz).
:type f_min: float
:param f_max: Second bound of the frequency range
used to approximate the given function (Hz).
:type f_max: float
:params e_inf: The real relative permittivity at infinity frequency.
:type e_inf: float, non-optional
:params a_p: Jonscher parameter. Real positive float number.
:type a_p: float, non-optional
:params omega_p: Jonscher parameter. Real positive float number.
:type omega_p: float, non-optional
:params n_p: Jonscher parameter, 0 < n_p < 1.
:type n_p: float, non-optional
"""
def __init__(self, f_min, f_max,
e_inf, a_p, omega_p, n_p,
sigma, mu, mu_sigma,
material_name, number_of_debye_poles=-1,
f_n=50, plot=False, save=False,
optimizer=PSO_DLS,
optimizer_options={}):
super(Jonscher, self).__init__(sigma=sigma, mu=mu, mu_sigma=mu_sigma,
material_name=material_name, f_n=f_n,
number_of_debye_poles=number_of_debye_poles,
plot=plot, save=save,
optimizer=optimizer,
optimizer_options=optimizer_options)
self.name = 'Jonsher function'
# Place the lower frequency bound at f_min and the upper frequency bound at f_max
if f_min > f_max:
self.f_min, self.f_max = f_max, f_min
else:
self.f_min, self.f_max = f_min, f_max
# Choosing n frequencies logarithmicaly equally spaced between the bounds given
self.set_freq(self.f_min, self.f_max, self.f_n)
self.e_inf, self.a_p, self.omega_p, self.n_p = e_inf, a_p, omega_p, n_p
self.params = {'f_min':self.f_min, 'f_max':self.f_max,
'eps_inf':self.e_inf, 'n_p':self.n_p,
'omega_p':self.omega_p, 'a_p':self.a_p}
def check_inputs(self):
""" Check the validity of the inputs. """
super(Jonscher, self).check_inputs()
try:
d = [float(i) for i in self.params.values()]
except ValueError:
sys.exit("The inputs should be numeric.")
if (np.array(d) < 0).sum() != 0:
sys.exit("The inputs should be positive.")
if self.n_p > 1:
sys.exit("n_p value must range between 0-1 (0 <= n_p <= 1)")
if self.f_min == self.f_max:
sys.exit("Error: Null frequency range!")
def calculation(self):
"""Calculates the Q function for the given parameters"""
return self.e_inf + (self.a_p * (2 * np.pi *
self.freq / self.omega_p)**(self.n_p-1)) * (
1 - 1j / np.tan(self.n_p * np.pi/2))
class Crim(Relaxation):
""" Approximate a given CRIM function
CRIM = (Σ frac_i * (ε_∞_i + Δε_i/(1 + 2πfj*τ_i))^a)^(1/a)
:param f_min: First bound of the frequency range
used to approximate the given function (Hz).
:type f_min: float
:param f_max: Second bound of the frequency range
used to approximate the given function (Hz).
:type f_max: float
:param a: Shape factor.
:type a: float, non-optional
:param: volumetric_fractions: Volumetric fraction for each material.
:type volumetric_fractions: ndarray, non-optional
:param materials: Arrays of materials properties, for each material [e_inf, de, tau_0].
:type materials: ndarray, non-optional
"""
def __init__(self, f_min, f_max, a, volumetric_fractions,
materials, sigma, mu, mu_sigma, material_name,
number_of_debye_poles=-1, f_n=50,
plot=False, save=False,
optimizer=PSO_DLS,
optimizer_options={}):
super(Crim, self).__init__(sigma=sigma, mu=mu, mu_sigma=mu_sigma,
material_name=material_name, f_n=f_n,
number_of_debye_poles=number_of_debye_poles,
plot=plot, save=save,
optimizer=optimizer,
optimizer_options=optimizer_options)
self.name = 'CRIM function'
# Place the lower frequency bound at f_min and the upper frequency bound at f_max
if f_min > f_max:
self.f_min, self.f_max = f_max, f_min
else:
self.f_min, self.f_max = f_min, f_max
# Choosing n frequencies logarithmicaly equally spaced between the bounds given
self.set_freq(self.f_min, self.f_max, self.f_n)
self.a = a
self.volumetric_fractions = np.array(volumetric_fractions)
self.materials = np.array(materials)
self.params = {'f_min':self.f_min, 'f_max':self.f_max,
'a':self.a, 'volumetric_fractions':self.volumetric_fractions,
'materials':self.materials}
def check_inputs(self):
""" Check the validity of the inputs. """
super(Crim, self).check_inputs()
try:
d = [float(i) for i in
[self.f_min, self.f_max, self.a]]
except ValueError:
sys.exit("The inputs should be numeric.")
if (np.array(d) < 0).sum() != 0:
sys.exit("The inputs should be positive.")
if len(self.volumetric_fractions) != len(self.materials):
sys.exit("Number of volumetric volumes does not match the dielectric properties")
# Check if the materials are at least two
if len(self.volumetric_fractions) < 2:
sys.exit("The materials should be at least 2")
# Check if the frequency range is null
if self.f_min == self.f_max:
sys.exit("Null frequency range")
# Check if the inputs are positive
f = [i for i in self.volumetric_fractions if i < 0]
if len(f) != 0:
sys.exit("Error: The inputs should be positive")
for i in range(len(self.volumetric_fractions)):
f = [i for i in self.materials[i][:] if i < 0]
if len(f) != 0:
sys.exit("Error: The inputs should be positive")
# Check if the summation of the volumetric fractions equal to one
if np.sum(self.volumetric_fractions) != 1:
sys.exit("Error: The summation of volumetric volumes should be equal to 1")
def print_info(self):
""" Print information about chosen approximation settings """
print(f"Approximating Complex Refractive Index Model (CRIM)"
f" using {self.number_of_debye_poles} Debye poles")
print("CRIM parameters: ")
for i in range(len(self.volumetric_fractions)):
print("Material {}.:".format(i+1))
print("---------------------------------")
print(f"{'Vol. fraction':>27s} = {self.volumetric_fractions[i]}")
print(f"{'e_inf':>27s} = {self.materials[i][0]}")
print(f"{'De':>27s} = {self.materials[i][1]}")
print(f"{'log(tau_0)':>27s} = {np.log10(self.materials[i][2])}")
def calculation(self):
"""Calculates the Crim function for the given parameters"""
return np.sum(np.repeat(self.volumetric_fractions, len(self.freq)
).reshape((-1, len(self.materials)))*(
self.materials[:, 0] + self.materials[:, 1] / (
1 + 1j * 2 * np.pi * np.repeat(self.freq, len(self.materials)
).reshape((-1, len(self.materials))) * self.materials[:, 2]))**self.a,
axis=1)**(1 / self.a)
class Rawdata(Relaxation):
""" Interpolate data given from a text file.
:param filename: text file which contains three columns:
frequency (Hz),Real,Imaginary (separated by comma).
:type filename: str, non-optional
:param delimiter: separator for three data columns
:type delimiter: str, optional (Deafult: ',')
"""
def __init__(self, filename,
sigma, mu, mu_sigma,
material_name, number_of_debye_poles=-1,
f_n=50, delimiter =',',
plot=False, save=False,
optimizer=PSO_DLS,
optimizer_options={}):
super(Rawdata, self).__init__(sigma=sigma, mu=mu, mu_sigma=mu_sigma,
material_name=material_name, f_n=f_n,
number_of_debye_poles=number_of_debye_poles,
plot=plot, save=save,
optimizer=optimizer,
optimizer_options=optimizer_options)
self.delimiter = delimiter
self.filename = Path(filename).absolute()
self.params = {'filename':self.filename}
def check_inputs(self):
""" Check the validity of the inputs. """
super(Rawdata, self).check_inputs()
if not os.path.isfile(self.filename):
sys.exit("File doesn't exists!")
def calculation(self):
""" Interpolate real and imaginary part from data.
Column framework of the input file three columns comma-separated
Frequency(Hz),Real,Imaginary
"""
# Read the file
with open(self.filename) as f:
try:
array = np.array(
[[float(x) for x in line.split(self.delimiter)] for line in f]
)
except ValueError:
sys.exit("Error: The inputs should be numeric")
self.set_freq(min(array[:, 0]), max(array[:, 0]), self.f_n)
rl_interp = scipy.interpolate.interp1d(array[:, 0], array[:, 1])
im_interp = scipy.interpolate.interp1d(array[:, 0], array[:, 2])
return rl_interp(self.freq) - 1j * im_interp(self.freq)
if __name__ == "__main__":
### Kelley et al. parameters
setup = HavriliakNegami(f_min=1e7, f_max=1e11,
alpha=0.91, beta=0.45,
e_inf=2.7, de=8.6-2.7, tau_0=9.4e-10,
sigma=0, mu=0, mu_sigma=0,
material_name="Kelley", f_n=100,
plot=True, save=False,
optimizer_options={'swarmsize':30,
'maxiter':100,
'omega':0.5,
'phip':1.4,
'phig':1.4,
'minstep':1e-8,
'minfun':1e-8,
'seed': 111,
'pflag': True})
setup.run()
setup = HavriliakNegami(f_min=1e7, f_max=1e11,
alpha=1-0.09, beta=0.45,
e_inf=2.7, de=8.6-2.7, tau_0=9.4e-10,
sigma=0, mu=0, mu_sigma=0,
material_name="Kelley", f_n=100,
plot=True, save=False,
optimizer=DA,
optimizer_options={'seed': 111})
setup.run()
setup = HavriliakNegami(f_min=1e7, f_max=1e11,
alpha=1-0.09, beta=0.45,
e_inf=2.7, de=8.6-2.7, tau_0=9.4e-10,
sigma=0, mu=0, mu_sigma=0,
material_name="Kelley", f_n=100,
plot=True, save=False,
optimizer=DE,
optimizer_options={'seed': 111})
setup.run()
### Testing setup
setup = Rawdata("Test.txt", 0.1, 1, 0.1, "M1", plot=True,
optimizer_options={'seed': 111})
setup.run()
np.random.seed(111)
setup = HavriliakNegami(1e12, 1e-3, 0.5, 1, 10, 5,
1e-6, 0.1, 1, 0, "M2", plot=True)
setup.run()
setup = Jonscher(1e6, 1e-5, 50, 1, 1e5, 0.7,
0.1, 1, 0.1, "M3", plot=True)
setup.run()
f = np.array([0.5, 0.5])
material1 = [3, 25, 1e6]
material2 = [3, 0, 1e3]
materials = np.array([material1, material2])
setup = Crim(1*1e-1, 1e-9, 0.5, f, materials, 0.1,
1, 0, "M4", plot=True)
setup.run()