文件
gprMax/gprMax/cmds_geometry/cone.py
2025-02-04 20:38:27 +00:00

180 行
6.4 KiB
Python

# Copyright (C) 2015-2025: The University of Edinburgh, United Kingdom
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import logging
import numpy as np
from ..cython.geometry_primitives import build_cone
from ..materials import Material
from .cmds_geometry import UserObjectGeometry, check_averaging
logger = logging.getLogger(__name__)
class Cone(UserObjectGeometry):
"""Introduces a circular cone into the model. The difference with the cylinder is that the faces of the cone
can have different radii and one of them can be zero.
Attributes:
p1: list of the coordinates (x,y,z) of the centre of the first face
of the cone.
p2: list of the coordinates (x,y,z) of the centre of the second face
of the cone.
r1: float of the radius of the first face of the cone.
r2: float of the radius of the second face of the cone.
material_id: string for the material identifier that must correspond
to material that has already been defined.
material_ids: list of material identifiers in the x, y, z directions.
averaging: string (y or n) used to switch on and off dielectric smoothing.
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.hash = "#cone"
def build(self, grid, uip):
try:
p1 = self.kwargs["p1"]
p2 = self.kwargs["p2"]
r1 = self.kwargs["r1"]
r2 = self.kwargs["r2"]
except KeyError:
logger.exception(
f"{self.__str__()} please specify two points and two radii"
)
raise
# Check averaging
try:
# Try user-specified averaging
averagecone = self.kwargs["averaging"]
averagecone = check_averaging(averagecone)
except KeyError:
# Otherwise go with the grid default
averagecone = grid.averagevolumeobjects
# Check materials have been specified
# Isotropic case
try:
materialsrequested = [self.kwargs["material_id"]]
except KeyError:
# Anisotropic case
try:
materialsrequested = self.kwargs["material_ids"]
except KeyError:
logger.exception(f"{self.__str__()} no materials have been specified")
raise
p3 = uip.round_to_grid_static_point(p1)
p4 = uip.round_to_grid_static_point(p2)
x1, y1, z1 = uip.round_to_grid(p1)
x2, y2, z2 = uip.round_to_grid(p2)
if r1 < 0:
logger.exception(
f"{self.__str__()} the radius of the first face {r1:g} should be a positive value."
)
raise ValueError
if r2 < 0:
logger.exception(
f"{self.__str__()} the radius of the second face {r2:g} should be a positive value."
)
raise ValueError
if r1 == 0 and r2 == 0:
logger.exception(f"{self.__str__()} both radii cannot be zero.")
raise ValueError
# Look up requested materials in existing list of material instances
materials = [y for x in materialsrequested for y in grid.materials if y.ID == x]
if len(materials) != len(materialsrequested):
notfound = [x for x in materialsrequested if x not in materials]
logger.exception(f"{self.__str__()} material(s) {notfound} do not exist")
raise ValueError
# Isotropic case
if len(materials) == 1:
averaging = materials[0].averagable and averagecone
numID = numIDx = numIDy = numIDz = materials[0].numID
# Uniaxial anisotropic case
elif len(materials) == 3:
averaging = False
numIDx = materials[0].numID
numIDy = materials[1].numID
numIDz = materials[2].numID
requiredID = materials[0].ID + "+" + materials[1].ID + "+" + materials[2].ID
averagedmaterial = [x for x in grid.materials if x.ID == requiredID]
if averagedmaterial:
numID = averagedmaterial.numID
else:
numID = len(grid.materials)
m = Material(numID, requiredID)
m.type = "dielectric-smoothed"
# Create dielectric-smoothed constituents for material
m.er = np.mean(
(materials[0].er, materials[1].er, materials[2].er), axis=0
)
m.se = np.mean(
(materials[0].se, materials[1].se, materials[2].se), axis=0
)
m.mr = np.mean(
(materials[0].mr, materials[1].mr, materials[2].mr), axis=0
)
m.sm = np.mean(
(materials[0].sm, materials[1].sm, materials[2].sm), axis=0
)
# Append the new material object to the materials list
grid.materials.append(m)
build_cone(
x1,
y1,
z1,
x2,
y2,
z2,
r1,
r2,
grid.dx,
grid.dy,
grid.dz,
numID,
numIDx,
numIDy,
numIDz,
averaging,
grid.solid,
grid.rigidE,
grid.rigidH,
grid.ID,
)
dielectricsmoothing = "on" if averaging else "off"
logger.info(
f"{self.grid_name(grid)}Cone with face centres {p3[0]:g}m, "
f"{p3[1]:g}m, {p3[2]:g}m and {p4[0]:g}m, {p4[1]:g}m, {p4[2]:g}m, "
f"with radii {r1:g}m and {r2:g}, of material(s) {', '.join(materialsrequested)} "
f"created, dielectric smoothing is {dielectricsmoothing}."
)