文件
gprMax/tools/plot_Ascan.py
2025-07-17 12:33:35 +01:00

226 行
10 KiB
Python
原始文件 Blame 文件历史

此文件含有不可见的 Unicode 字符

此文件含有人类无法区分的不可见的 Unicode 字符,但可以由计算机进行不同的处理。 如果您是想特意这样的,可以安全地忽略该警告。 使用 Escape 按钮显示他们。

# Copyright (C) 2015-2023: The University of Edinburgh
# Authors: Craig Warren and Antonis Giannopoulos
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import argparse
import os
import h5py
import numpy as np
import matplotlib.pyplot as plt
from gprMax.exceptions import CmdInputError
from gprMax.receivers import Rx
from gprMax.utilities import fft_power
def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False):
"""Plots electric and magnetic fields and currents from all receiver points in the given output file. Each receiver point is plotted in a new figure window.
Args:
filename (string): Filename (including path) of output file.
outputs (list): List of field/current components to plot.
fft (boolean): Plot FFT switch.
Returns:
plt (object): matplotlib plot object.
"""
# Open output file and read some attributes
f = h5py.File(filename, 'r')
nrx = f.attrs['nrx']
dt = f.attrs['dt']
iterations = f.attrs['Iterations']
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
# Check there are any receivers
if nrx == 0:
raise CmdInputError('No receivers found in {}'.format(filename))
# Check for single output component when doing a FFT
if fft:
if not len(outputs) == 1:
raise CmdInputError('A single output must be specified when using the -fft option')
# New plot for each receiver
for rx in range(1, nrx + 1):
path = '/rxs/rx' + str(rx) + '/'
availableoutputs = list(f[path].keys())
# If only a single output is required, create one subplot
if len(outputs) == 1:
# Check for polarity of output and if requested output is in file
if outputs[0][-1] == '-':
polarity = -1
outputtext = '-' + outputs[0][0:-1]
output = outputs[0][0:-1]
else:
polarity = 1
outputtext = outputs[0]
output = outputs[0]
if output not in availableoutputs:
raise CmdInputError('{} output requested to plot, but the available output for receiver 1 is {}'.format(output, ', '.join(availableoutputs)))
outputdata = f[path + output][:] * polarity
# Plotting if FFT required
if fft:
# FFT
freqs, power = fft_power(outputdata, dt)
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
# Set plotting range to -60dB from maximum power or 4 times
# frequency at maximum power
try:
pltrange = np.where(power[freqmaxpower:] < -60)[0][0] + freqmaxpower + 1
except:
pltrange = freqmaxpower * 4
pltrange = np.s_[0:pltrange]
# Plot time history of output component
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
line1 = ax1.plot(time, outputdata, 'r', lw=2, label=outputtext)
ax1.set_xlabel('Time [s]')
ax1.set_ylabel(outputtext + ' field strength [V/m]')
ax1.set_xlim([0, np.amax(time)])
ax1.grid(which='both', axis='both', linestyle='-.')
# Plot frequency spectra
markerline, stemlines, baseline = ax2.stem(freqs[pltrange], power[pltrange], '-.')
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'r')
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
line2 = ax2.plot(freqs[pltrange], power[pltrange], 'r', lw=2)
ax2.set_xlabel('Frequency [Hz]')
ax2.set_ylabel('Power [dB]')
ax2.grid(which='both', axis='both', linestyle='-.')
# Change colours and labels for magnetic field components or currents
if 'H' in outputs[0]:
plt.setp(line1, color='g')
plt.setp(line2, color='g')
plt.setp(ax1, ylabel=outputtext + ' field strength [A/m]')
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
elif 'I' in outputs[0]:
plt.setp(line1, color='b')
plt.setp(line2, color='b')
plt.setp(ax1, ylabel=outputtext + ' current [A]')
plt.setp(stemlines, 'color', 'b')
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
plt.show()
# Plotting if no FFT required
else:
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]', ylabel=outputtext + ' field strength [V/m]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
line = ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
ax.set_xlim([0, np.amax(time)])
ax.grid(which='both', axis='both', linestyle='-.')
if 'H' in output:
plt.setp(line, color='g')
plt.setp(ax, ylabel=outputtext + ', field strength [A/m]')
elif 'I' in output:
plt.setp(line, color='b')
plt.setp(ax, ylabel=outputtext + ', current [A]')
# If multiple outputs required, create all nine subplots and populate only the specified ones
else:
plt_cols = 3 if len(outputs) == 9 else 2
fig, axs = plt.subplots(
subplot_kw=dict(xlabel="Time [s]"),
num='rx' + str(rx),
figsize=(20, 10),
nrows = 3,
ncols = plt_cols,
facecolor="w",
edgecolor="w",
)
for output in outputs:
# Check for polarity of output and if requested output is in file
if output[-1] == '-':
polarity = -1
outputtext = '-' + output[0:-1]
output = output[0:-1]
else:
polarity = 1
outputtext = output
# Check if requested output is in file
if output not in availableoutputs:
raise CmdInputError('Output(s) requested to plot: {}, but available output(s) for receiver {} in the file: {}'.format(', '.join(outputs), rx, ', '.join(availableoutputs)))
outputdata = f[path + output][:] * polarity
if output == "Ex":
axs[0, 0].plot(time, outputdata, "r", lw=2, label=outputtext)
axs[0, 0].set_ylabel(outputtext + ", field strength [V/m]")
elif output == "Ey":
axs[1, 0].plot(time, outputdata, "r", lw=2, label=outputtext)
axs[1, 0].set_ylabel(outputtext + ", field strength [V/m]")
elif output == "Ez":
axs[2, 0].plot(time, outputdata, "r", lw=2, label=outputtext)
axs[2, 0].set_ylabel(outputtext + ", field strength [V/m]")
elif output == "Hx":
axs[0, 1].plot(time, outputdata, "g", lw=2, label=outputtext)
axs[0, 1].set_ylabel(outputtext + ", field strength [A/m]")
elif output == "Hy":
axs[1, 1].plot(time, outputdata, "g", lw=2, label=outputtext)
axs[1, 1].set_ylabel(outputtext + ", field strength [A/m]")
elif output == "Hz":
axs[2, 1].plot(time, outputdata, "g", lw=2, label=outputtext)
axs[2, 1].set_ylabel(outputtext + ", field strength [A/m]")
elif output == "Ix":
axs[0, 2].plot(time, outputdata, "b", lw=2, label=outputtext)
axs[0, 2].set_ylabel(outputtext + ", current [A]")
elif output == "Iy":
axs[1, 2].plot(time, outputdata, "b", lw=2, label=outputtext)
axs[1, 2].set_ylabel(outputtext + ", current [A]")
elif output == "Iz":
axs[2, 2].plot(time, outputdata, "b", lw=2, label=outputtext)
axs[2, 2].set_ylabel(outputtext + ", current [A]")
for ax in fig.axes:
ax.set_xlim([0, np.amax(time)])
ax.grid(which="both", axis="both", linestyle="-.")
# Save a PDF/PNG of the figure
# fig.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_rx' + str(rx) + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
# fig.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_rx' + str(rx) + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
f.close()
return plt
if __name__ == "__main__":
# Parse command line arguments
parser = argparse.ArgumentParser(description='Plots electric and magnetic fields and currents from all receiver points in the given output file. Each receiver point is plotted in a new figure window.', usage='cd gprMax; python -m tools.plot_Ascan outputfile')
parser.add_argument('outputfile', help='name of output file including path')
parser.add_argument('--outputs', help='outputs to be plotted', default=Rx.defaultoutputs, choices=['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz', 'Ix', 'Iy', 'Iz', 'Ex-', 'Ey-', 'Ez-', 'Hx-', 'Hy-', 'Hz-', 'Ix-', 'Iy-', 'Iz-'], nargs='+')
parser.add_argument('-fft', action='store_true', help='plot FFT (single output must be specified)', default=False)
args = parser.parse_args()
plthandle = mpl_plot(args.outputfile, args.outputs, fft=args.fft)
plthandle.show()