文件
gprMax/tests/test_models.py
2020-04-07 15:24:22 +01:00

212 行
9.9 KiB
Python

# Copyright (C) 2015-2020: The University of Edinburgh
# Authors: Craig Warren and Antonis Giannopoulos
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import sys
from pathlib import Path
import gprMax
import h5py
import matplotlib.pyplot as plt
import numpy as np
from colorama import Fore, Style, init
init()
from gprMax.exceptions import GeneralError
from tests.analytical_solutions import hertzian_dipole_fs
if sys.platform == 'linux':
plt.switch_backend('agg')
"""Compare field outputs
Usage:
cd gprMax
python -m tests.test_models
"""
# Specify directoty with set of models to test
modelset = 'models_basic'
# modelset += 'models_advanced'
# modelset += 'models_pmls'
basepath = Path(__file__).parents[0] / modelset
# List of available basic test models
testmodels = ['hertzian_dipole_fs_analytical', '2D_ExHyHz', '2D_EyHxHz', '2D_EzHxHy', 'cylinder_Ascan_2D', 'hertzian_dipole_fs', 'hertzian_dipole_hs', 'hertzian_dipole_dispersive', 'magnetic_dipole_fs']
# List of available advanced test models
# testmodels = ['antenna_GSSI_1500_fs', 'antenna_MALA_1200_fs']
# List of available PML models
# testmodels = ['pml_x0', 'pml_y0', 'pml_z0', 'pml_xmax', 'pml_ymax', 'pml_zmax', 'pml_3D_pec_plate']
# Select a specific model if desired
# testmodels = testmodels[:-1]
# testmodels = [testmodels[6]]
testresults = dict.fromkeys(testmodels)
path = '/rxs/rx1/'
# Minimum value of difference to plot (dB)
plotmin = -160
for i, model in enumerate(testmodels):
testresults[model] = {}
# Run model
file = basepath / model / model
gprMax.run(inputfile=file.with_suffix('.in'), gpu=[0])
# Special case for analytical comparison
if model == 'hertzian_dipole_fs_analytical':
# Get output for model file
filetest = h5py.File(file.with_suffix('.h5'), 'r')
testresults[model]['Test version'] = filetest.attrs['gprMax']
# Get available field output component names
outputstest = list(filetest[path].keys())
# Arrays for storing time
float_or_double = filetest[path + outputstest[0]].dtype
timetest = np.linspace(0, (filetest.attrs['Iterations'] - 1) * filetest.attrs['dt'], num=filetest.attrs['Iterations']) / 1e-9
timeref = timetest
# Arrays for storing field data
datatest = np.zeros((filetest.attrs['Iterations'], len(outputstest)), dtype=float_or_double)
for ID, name in enumerate(outputstest):
datatest[:, ID] = filetest[path + str(name)][:]
if np.any(np.isnan(datatest[:, ID])):
raise GeneralError('Test data contains NaNs')
# Tx/Rx position to feed to analytical solution
rxpos = filetest[path].attrs['Position']
txpos = filetest['/srcs/src1/'].attrs['Position']
rxposrelative = ((rxpos[0] - txpos[0]), (rxpos[1] - txpos[1]), (rxpos[2] - txpos[2]))
# Analytical solution of a dipole in free space
dataref = hertzian_dipole_fs(filetest.attrs['Iterations'], filetest.attrs['dt'], filetest.attrs['dx_dy_dz'], rxposrelative)
filetest.close()
else:
# Get output for model and reference files
fileref = file.stem + '_ref'
fileref = file.parent / Path(fileref)
fileref = h5py.File(fileref.with_suffix('.h5'), 'r')
filetest = h5py.File(file.with_suffix('.h5'), 'r')
testresults[model]['Ref version'] = fileref.attrs['gprMax']
testresults[model]['Test version'] = filetest.attrs['gprMax']
# Get available field output component names
outputsref = list(fileref[path].keys())
outputstest = list(filetest[path].keys())
if outputsref != outputstest:
raise GeneralError('Field output components do not match reference solution')
# Check that type of float used to store fields matches
if filetest[path + outputstest[0]].dtype != fileref[path + outputsref[0]].dtype:
print(Fore.RED + f'WARNING: Type of floating point number in test model ({filetest[path + outputstest[0]].dtype}) does not match type in reference solution ({fileref[path + outputsref[0]].dtype})\n' + Style.RESET_ALL)
float_or_doubleref = fileref[path + outputsref[0]].dtype
float_or_doubletest = filetest[path + outputstest[0]].dtype
# Arrays for storing time
timeref = np.zeros((fileref.attrs['Iterations']), dtype=float_or_doubleref)
timeref = np.linspace(0, (fileref.attrs['Iterations'] - 1) * fileref.attrs['dt'], num=fileref.attrs['Iterations']) / 1e-9
timetest = np.zeros((filetest.attrs['Iterations']), dtype=float_or_doubletest)
timetest = np.linspace(0, (filetest.attrs['Iterations'] - 1) * filetest.attrs['dt'], num=filetest.attrs['Iterations']) / 1e-9
# Arrays for storing field data
dataref = np.zeros((fileref.attrs['Iterations'], len(outputsref)), dtype=float_or_doubleref)
datatest = np.zeros((filetest.attrs['Iterations'], len(outputstest)), dtype=float_or_doubletest)
for ID, name in enumerate(outputsref):
dataref[:, ID] = fileref[path + str(name)][:]
datatest[:, ID] = filetest[path + str(name)][:]
if np.any(np.isnan(datatest[:, ID])):
raise GeneralError('Test data contains NaNs')
fileref.close()
filetest.close()
# Diffs
datadiffs = np.zeros(datatest.shape, dtype=np.float64)
for i in range(len(outputstest)):
max = np.amax(np.abs(dataref[:, i]))
datadiffs[:, i] = np.divide(np.abs(dataref[:, i] - datatest[:, i]), max, out=np.zeros_like(dataref[:, i]), where=max != 0) # Replace any division by zero with zero
# Calculate power (ignore warning from taking a log of any zero values)
with np.errstate(divide='ignore'):
datadiffs[:, i] = 20 * np.log10(datadiffs[:, i])
# Replace any NaNs or Infs from zero division
datadiffs[:, i][np.invert(np.isfinite(datadiffs[:, i]))] = 0
# Store max difference
maxdiff = np.amax(np.amax(datadiffs))
testresults[model]['Max diff'] = maxdiff
# Plot datasets
fig1, ((ex1, hx1), (ey1, hy1), (ez1, hz1)) = plt.subplots(nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), num=model + '.in', figsize=(20, 10), facecolor='w', edgecolor='w')
ex1.plot(timetest, datatest[:, 0], 'r', lw=2, label=model)
ex1.plot(timeref, dataref[:, 0], 'g', lw=2, ls='--', label=model + '(Ref)')
ey1.plot(timetest, datatest[:, 1], 'r', lw=2, label=model)
ey1.plot(timeref, dataref[:, 1], 'g', lw=2, ls='--', label=model + '(Ref)')
ez1.plot(timetest, datatest[:, 2], 'r', lw=2, label=model)
ez1.plot(timeref, dataref[:, 2], 'g', lw=2, ls='--', label=model + '(Ref)')
hx1.plot(timetest, datatest[:, 3], 'r', lw=2, label=model)
hx1.plot(timeref, dataref[:, 3], 'g', lw=2, ls='--', label=model + '(Ref)')
hy1.plot(timetest, datatest[:, 4], 'r', lw=2, label=model)
hy1.plot(timeref, dataref[:, 4], 'g', lw=2, ls='--', label=model + '(Ref)')
hz1.plot(timetest, datatest[:, 5], 'r', lw=2, label=model)
hz1.plot(timeref, dataref[:, 5], 'g', lw=2, ls='--', label=model + '(Ref)')
ylabels = ['$E_x$, field strength [V/m]', '$H_x$, field strength [A/m]', '$E_y$, field strength [V/m]', '$H_y$, field strength [A/m]', '$E_z$, field strength [V/m]', '$H_z$, field strength [A/m]']
for i, ax in enumerate(fig1.axes):
ax.set_ylabel(ylabels[i])
ax.set_xlim(0, np.amax(timetest))
ax.grid()
ax.legend()
# Plot diffs
fig2, ((ex2, hx2), (ey2, hy2), (ez2, hz2)) = plt.subplots(nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), num='Diffs: ' + model + '.in', figsize=(20, 10), facecolor='w', edgecolor='w')
ex2.plot(timeref, datadiffs[:, 0], 'r', lw=2, label='Ex')
ey2.plot(timeref, datadiffs[:, 1], 'r', lw=2, label='Ey')
ez2.plot(timeref, datadiffs[:, 2], 'r', lw=2, label='Ez')
hx2.plot(timeref, datadiffs[:, 3], 'r', lw=2, label='Hx')
hy2.plot(timeref, datadiffs[:, 4], 'r', lw=2, label='Hy')
hz2.plot(timeref, datadiffs[:, 5], 'r', lw=2, label='Hz')
ylabels = ['$E_x$, difference [dB]', '$H_x$, difference [dB]', '$E_y$, difference [dB]', '$H_y$, difference [dB]', '$E_z$, difference [dB]', '$H_z$, difference [dB]']
for i, ax in enumerate(fig2.axes):
ax.set_ylabel(ylabels[i])
ax.set_xlim(0, np.amax(timetest))
ax.set_ylim([plotmin, np.amax(np.amax(datadiffs))])
ax.grid()
# Save a PDF/PNG of the figure
filediffs = file.stem + '_diffs'
filediffs = file.parent / Path(filediffs)
# fig1.savefig(file.with_suffix('.pdf'), dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
# fig2.savefig(savediffs.with_suffix('.pdf'), dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
fig1.savefig(file.with_suffix('.png'), dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
fig2.savefig(filediffs.with_suffix('.png'), dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
# Summary of results
for name, data in sorted(testresults.items()):
if 'analytical' in name:
print(Fore.CYAN + f"Test '{name}.in' using v.{data['Test version']} compared to analytical solution. Max difference {data['Max diff']:.2f}dB." + Style.RESET_ALL)
else:
print(Fore.CYAN + f"Test '{name}.in' using v.{data['Test version']} compared to reference solution using v.{data['Ref version']}. Max difference {data['Max diff']:.2f}dB." + Style.RESET_ALL)