文件
gprMax/gprMax/fractals.py
2025-06-19 15:15:53 +01:00

706 行
24 KiB
Python

# Copyright (C) 2015-2025: The University of Edinburgh, United Kingdom
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import logging
from typing import List, Optional, Tuple, Union
import numpy as np
import numpy.typing as npt
from mpi4py import MPI
from mpi4py_fft import PFFT, DistArray, newDistArray
from mpi4py_fft.pencil import Subcomm
from scipy import fftpack
import gprMax.config as config
from gprMax.grid.mpi_grid import MPIGrid
from gprMax.output_controllers.grid_view import MPIGridView
from gprMax.utilities.mpi import Dim, Dir, get_relative_neighbour
from .cython.fractals_generate import generate_fractal2D, generate_fractal3D
from .utilities.utilities import round_value
logger = logging.getLogger(__name__)
np.seterr(divide="raise")
class FractalSurface:
"""Fractal surfaces."""
surfaceIDs = ["xminus", "xplus", "yminus", "yplus", "zminus", "zplus"]
def __init__(self, xs, xf, ys, yf, zs, zf, dimension, seed):
"""
Args:
xs, xf, ys, yf, zs, zf: floats for the extent of the fractal surface
(one pair of coordinates must be equal
to correctly define a surface).
dimension: float for the fractal dimension that controls the fractal
distribution.
seed: int for seed value for random number generator.
"""
self.ID = None
self.surfaceID = None
self.xs = xs
self.xf = xf
self.ys = ys
self.yf = yf
self.zs = zs
self.zf = zf
self.nx = xf - xs
self.ny = yf - ys
self.nz = zf - zs
self.dtype = np.dtype(np.complex128)
self.seed = seed
self.dimension = (
dimension # Fractal dimension from: http://dx.doi.org/10.1017/CBO9781139174695
)
self.weighting = np.array([1, 1], dtype=np.float64)
self.fractalrange = (0, 0)
self.filldepth = 0
self.grass = []
def get_surface_dims(self):
"""Gets the dimensions of the fractal surface based on surface plane."""
if self.xs == self.xf:
surfacedims = (self.ny, self.nz)
elif self.ys == self.yf:
surfacedims = (self.nx, self.nz)
elif self.zs == self.zf:
surfacedims = (self.nx, self.ny)
return surfacedims
def generate_fractal_surface(self):
"""Generate a 2D array with a fractal distribution."""
surfacedims = self.get_surface_dims()
self.fractalsurface = np.zeros(surfacedims, dtype=self.dtype)
# Positional vector at centre of array, scaled by weighting
v1 = np.array(
[
self.weighting[0] * (surfacedims[0]) / 2,
self.weighting[1] * (surfacedims[1]) / 2,
]
)
# 2D array of random numbers to be convolved with the fractal function
rng = np.random.default_rng(seed=self.seed)
A = rng.standard_normal(size=(surfacedims[0], surfacedims[1]))
# 2D FFT
A = fftpack.fftn(A)
# Shift the zero frequency component to the centre of the array
A = fftpack.fftshift(A)
# Generate fractal
generate_fractal2D(
surfacedims[0],
surfacedims[1],
config.get_model_config().ompthreads,
self.dimension,
self.weighting,
v1,
A,
self.fractalsurface,
)
# Shift the zero frequency component to start of the array
self.fractalsurface = fftpack.ifftshift(self.fractalsurface)
# Set DC component of FFT to zero
self.fractalsurface[0, 0] = 0
# Take the real part (numerical errors can give rise to an imaginary part)
# of the IFFT, and convert type to floattype. N.B calculation of fractals
# must always be carried out at double precision, i.e. float64, complex128
self.fractalsurface = np.real(fftpack.ifftn(self.fractalsurface)).astype(
config.sim_config.dtypes["float_or_double"], copy=False
)
# Scale the fractal volume according to requested range
fractalmin = np.amin(self.fractalsurface)
fractalmax = np.amax(self.fractalsurface)
fractalrange = fractalmax - fractalmin
self.fractalsurface = (
self.fractalsurface * ((self.fractalrange[1] - self.fractalrange[0]) / fractalrange)
+ self.fractalrange[0]
- ((self.fractalrange[1] - self.fractalrange[0]) / fractalrange) * fractalmin
)
class FractalVolume:
"""Fractal volumes."""
def __init__(
self,
xs: int,
xf: int,
ys: int,
yf: int,
zs: int,
zf: int,
dimension: float,
seed: Optional[int],
):
"""
Args:
xs, xf, ys, yf, zs, zf: floats for the extent of the fractal volume.
dimension: float for the fractal dimension that controls the fractal
distribution.
seed: int for seed value for random number generator.
"""
self.ID = None
self.operatingonID = None
self.start = np.array([xs, ys, zs], dtype=np.int32)
self.stop = np.array([xf, yf, zf], dtype=np.int32)
self.originalxs = xs
self.originalxf = xf
self.originalys = ys
self.originalyf = yf
self.originalzs = zs
self.originalzf = zf
self.averaging = False
self.dtype = np.dtype(np.complex128)
self.seed = seed
self.dimension = (
dimension # Fractal dimension from: http://dx.doi.org/10.1017/CBO9781139174695
)
self.weighting = np.array([1, 1, 1], dtype=np.float64)
self.nbins = 0
self.fractalsurfaces = []
@property
def xs(self) -> int:
return self.start[0]
@xs.setter
def xs(self, value: int):
self.start[0] = value
@property
def ys(self) -> int:
return self.start[1]
@ys.setter
def ys(self, value: int):
self.start[1] = value
@property
def zs(self) -> int:
return self.start[2]
@zs.setter
def zs(self, value: int):
self.start[2] = value
@property
def xf(self) -> int:
return self.stop[0]
@xf.setter
def xf(self, value: int):
self.stop[0] = value
@property
def yf(self) -> int:
return self.stop[1]
@yf.setter
def yf(self, value: int):
self.stop[1] = value
@property
def zf(self) -> int:
return self.stop[2]
@zf.setter
def zf(self, value: int):
self.stop[2] = value
@property
def size(self) -> npt.NDArray[np.int32]:
return self.stop - self.start
@property
def nx(self) -> int:
return self.xf - self.xs
@property
def ny(self) -> int:
return self.yf - self.ys
@property
def nz(self) -> int:
return self.zf - self.zs
def generate_fractal_volume(self) -> bool:
"""Generate a 3D volume with a fractal distribution."""
# Scale filter according to size of fractal volume
if self.nx == 1:
filterscaling = np.amin(np.array([self.ny, self.nz])) / np.array([self.ny, self.nz])
filterscaling = np.insert(filterscaling, 0, 1)
elif self.ny == 1:
filterscaling = np.amin(np.array([self.nx, self.nz])) / np.array([self.nx, self.nz])
filterscaling = np.insert(filterscaling, 1, 1)
elif self.nz == 1:
filterscaling = np.amin(np.array([self.nx, self.ny])) / np.array([self.nx, self.ny])
filterscaling = np.insert(filterscaling, 2, 1)
else:
filterscaling = np.amin(np.array([self.nx, self.ny, self.nz])) / np.array(
[self.nx, self.ny, self.nz]
)
# Adjust weighting to account for filter scaling
self.weighting = np.multiply(self.weighting, filterscaling)
self.fractalvolume = np.zeros((self.nx, self.ny, self.nz), dtype=self.dtype)
# Positional vector at centre of array, scaled by weighting
v1 = np.array(
[
self.weighting[0] * self.nx / 2,
self.weighting[1] * self.ny / 2,
self.weighting[2] * self.nz / 2,
]
)
# 3D array of random numbers to be convolved with the fractal function
rng = np.random.default_rng(seed=self.seed)
A = rng.standard_normal(size=(self.nx, self.ny, self.nz))
# 3D FFT
A = fftpack.fftn(A)
# Generate fractal
generate_fractal3D(
self.nx,
self.ny,
self.nz,
0,
0,
0,
self.nx,
self.ny,
self.nz,
config.get_model_config().ompthreads,
self.dimension,
self.weighting,
v1,
A,
self.fractalvolume,
)
# Set DC component of FFT to zero
self.fractalvolume[0, 0, 0] = 0
# Take the real part (numerical errors can give rise to an imaginary part)
# of the IFFT, and convert type to floattype. N.B calculation of fractals
# must always be carried out at double precision, i.e. float64, complex128
self.fractalvolume = np.real(fftpack.ifftn(self.fractalvolume)).astype(
config.sim_config.dtypes["float_or_double"], copy=False
)
# Bin fractal values
bins = np.linspace(np.amin(self.fractalvolume), np.amax(self.fractalvolume), self.nbins)
for j in range(self.ny):
for k in range(self.nz):
self.fractalvolume[:, j, k] = np.digitize(
self.fractalvolume[:, j, k], bins, right=True
)
return True
def generate_volume_mask(self):
"""Generate a 3D volume to use as a mask for adding rough surfaces,
water and grass/roots. Zero signifies the mask is not set, one
signifies the mask is set.
"""
self.mask = np.zeros((self.nx, self.ny, self.nz), dtype=np.int8)
maskxs = self.originalxs - self.xs
maskxf = (self.originalxf - self.originalxs) + maskxs
maskys = self.originalys - self.ys
maskyf = (self.originalyf - self.originalys) + maskys
maskzs = self.originalzs - self.zs
maskzf = (self.originalzf - self.originalzs) + maskzs
self.mask[maskxs:maskxf, maskys:maskyf, maskzs:maskzf] = 1
class MPIFractalVolume(FractalVolume):
def __init__(
self,
xs: int,
xf: int,
ys: int,
yf: int,
zs: int,
zf: int,
dimension: float,
seed: Optional[int],
comm: MPI.Cartcomm,
ux: int,
uy: int,
uz: int,
):
super().__init__(xs, xf, ys, yf, zs, zf, dimension, seed)
self.comm = comm
self.upper_bound = np.array([ux, uy, uz])
def generate_fractal_volume(self) -> bool:
"""Generate a 3D volume with a fractal distribution."""
# Exit early if this rank does not contain the Fractal Volume
# The size of a fractal volume can increase if a Fractal Surface
# is attached. Hence the check needs to happen here once that
# has happened.
if any(self.stop < 0):
self.comm.Split(MPI.UNDEFINED)
return False
else:
# Create new cartsesian communicator for the Fractal Volume
comm = self.comm.Split()
assert isinstance(comm, MPI.Intracomm)
min_coord = np.array(self.comm.coords, dtype=np.int32)
max_coord = min_coord + 1
comm.Allreduce(MPI.IN_PLACE, min_coord, MPI.MIN)
comm.Allreduce(MPI.IN_PLACE, max_coord, MPI.MAX)
self.comm = comm.Create_cart((max_coord - min_coord).tolist())
# Check domain decomosition is valid for the Fractal Volume
if all([dim > 1 for dim in self.comm.dims]):
raise ValueError(
"Fractal volume must be positioned such that its MPI decomposition is 1 in at least"
f" 1 dimension. Current decompostion is: {self.comm.dims}"
)
# Scale filter according to size of fractal volume
sorted_size = np.sort(self.size)
min_size = sorted_size[1] if sorted_size[0] == 1 else sorted_size[0]
filterscaling = np.where(self.size == 1, 1, min_size / self.size)
# Adjust weighting to account for filter scaling
self.weighting = np.multiply(self.weighting, filterscaling)
# Positional vector at centre of array, scaled by weighting
v1 = self.weighting * self.size / 2
subcomm = Subcomm(self.comm)
A = DistArray(self.size, subcomm, dtype=self.dtype)
fft = PFFT(
None,
axes=tuple(np.argsort(self.comm.dims)[::-1]),
darray=A,
collapse=False,
backend="fftw",
)
# Decomposition of A may be different to the MPIGrid
A_shape = np.array(A.shape)
A_substart = np.array(A.substart)
static_dimension = Dim(A.alignment)
# 3D array of random numbers to be convolved with the fractal function
rng = np.random.default_rng(seed=self.seed)
for index in np.ndindex(*A.global_shape):
index = np.array(index)
if any(index < A_substart) or any(index >= A_substart + A_shape):
rng.standard_normal()
else:
index -= A_substart
A[index[0], index[1], index[2]] = rng.standard_normal()
A_hat = newDistArray(fft)
assert isinstance(A_hat, DistArray)
# 3D FFT
fft.forward(A, A_hat, normalize=False)
# Generate fractal
generate_fractal3D(
A_hat.shape[0],
A_hat.shape[1],
A_hat.shape[2],
A_hat.substart[0],
A_hat.substart[1],
A_hat.substart[2],
A_hat.global_shape[0],
A_hat.global_shape[1],
A_hat.global_shape[2],
config.get_model_config().ompthreads,
self.dimension,
self.weighting,
v1,
A_hat,
A_hat,
)
# Set DC component of FFT to zero
if all(A_substart == 0):
A_hat[0, 0, 0] = 0
# Inverse 3D FFT transform
fft.backward(A_hat, A, normalize=True)
# Take the real part (numerical errors can give rise to an imaginary part)
# of the IFFT, and convert type to floattype. N.B calculation of fractals
# must always be carried out at double precision, i.e. float64, complex128
A = np.real(A).astype(config.sim_config.dtypes["float_or_double"], copy=False)
# Allreduce to get min and max values in the fractal volume
min_value = np.array(np.amin(A), dtype=config.sim_config.dtypes["float_or_double"])
max_value = np.array(np.amax(A), dtype=config.sim_config.dtypes["float_or_double"])
self.comm.Allreduce(MPI.IN_PLACE, min_value, MPI.MIN)
self.comm.Allreduce(MPI.IN_PLACE, max_value, MPI.MAX)
# Bin fractal values
bins = np.linspace(min_value, max_value, self.nbins)
for j in range(A_shape[1]):
for k in range(A_shape[2]):
A[:, j, k] = np.digitize(A[:, j, k], bins, right=True)
# Distribute A (DistArray) to match the MPIGrid decomposition
local_shape = np.minimum(self.stop, self.upper_bound) - np.maximum(self.start, 0)
self.fractalvolume = np.zeros(
local_shape,
dtype=config.sim_config.dtypes["float_or_double"],
)
# Negative means send to negative neighbour
# Positive means receive from negative neighbour
negative_offset = np.where(self.start >= 0, 0, self.start + A_substart)
# Negative means send to positive neighbour
# Positive means receive from positive neighbour
positive_offset = np.minimum(self.stop, self.upper_bound) - (
self.start + A_substart + A_shape
)
dirs = np.full(3, Dir.NONE)
starts, subshape = self.calculate_starts_and_subshape(
A_shape, -negative_offset, -positive_offset, dirs, sending=True
)
ends = starts + subshape
A_local = A[starts[0] : ends[0], starts[1] : ends[1], starts[2] : ends[2]]
starts, subshape = self.calculate_starts_and_subshape(
local_shape, negative_offset, positive_offset, dirs
)
ends = starts + subshape
self.fractalvolume[starts[0] : ends[0], starts[1] : ends[1], starts[2] : ends[2]] = A_local
requests: List[MPI.Request] = []
# Need to check neighbours in each direction (2D plane)
sections = [
(Dir.NEG, Dir.NONE),
(Dir.POS, Dir.NONE),
(Dir.NONE, Dir.NEG),
(Dir.NONE, Dir.POS),
(Dir.NEG, Dir.NEG),
(Dir.NEG, Dir.POS),
(Dir.POS, Dir.NEG),
(Dir.POS, Dir.POS),
]
# Dimensions of the 2D plane
dims = [dim for dim in Dim if dim != static_dimension]
for section in sections:
dirs[dims[0]] = section[0]
dirs[dims[1]] = section[1]
rank = get_relative_neighbour(self.comm, dirs)
# Skip if no neighbour
if rank == -1:
continue
# Check if any data to send
if all(
np.logical_or(
dirs == Dir.NONE,
np.where(dirs == Dir.NEG, negative_offset <= 0, positive_offset <= 0),
)
):
mpi_type = self.create_mpi_type(
A_shape, -negative_offset, -positive_offset, dirs, sending=True
)
logger.debug(f"Sending fractal volume to rank {rank}, MPI type={mpi_type.decode()}")
self.comm.Isend([A, mpi_type], rank)
# Check if any data to receive
if all(
np.logical_or(
dirs == Dir.NONE,
np.where(dirs == Dir.NEG, negative_offset > 0, positive_offset > 0),
)
):
mpi_type = self.create_mpi_type(local_shape, negative_offset, positive_offset, dirs)
logger.debug(
f"Receiving fractal volume from rank {rank}, MPI type={mpi_type.decode()}"
)
request = self.comm.Irecv([self.fractalvolume, mpi_type], rank)
requests.append(request)
if len(requests) > 0:
requests[0].Waitall(requests)
# Update start and stop to local bounds
self.start = np.maximum(self.start, 0)
self.stop = np.minimum(self.stop, self.upper_bound)
logger.debug(
f"Generated fractal volume: start={self.start}, stop={self.stop}, size={self.size}"
)
return True
def calculate_starts_and_subshape(
self,
shape: npt.NDArray[np.int32],
negative_offset: npt.NDArray[np.int32],
positive_offset: npt.NDArray[np.int32],
dirs: npt.NDArray[np.int32],
sending: bool = False,
) -> Tuple[npt.NDArray[np.int32], npt.NDArray[np.int32]]:
negative_offset = np.where(
dirs == Dir.NONE,
np.maximum(negative_offset, 0),
np.abs(negative_offset),
)
positive_offset = np.where(
dirs == Dir.NONE,
np.maximum(positive_offset, 0),
np.abs(positive_offset),
)
starts = np.select(
[dirs == Dir.NEG, dirs == Dir.POS],
[0, shape - positive_offset - sending],
default=negative_offset,
)
subshape = np.select(
[dirs == Dir.NEG, dirs == Dir.POS],
[negative_offset + sending, positive_offset + sending],
default=shape - negative_offset - positive_offset,
)
return starts, subshape
def create_mpi_type(
self,
shape: npt.NDArray[np.int32],
negative_offset: npt.NDArray[np.int32],
positive_offset: npt.NDArray[np.int32],
dirs: npt.NDArray[np.int32],
sending: bool = False,
) -> MPI.Datatype:
starts, subshape = self.calculate_starts_and_subshape(
shape, negative_offset, positive_offset, dirs, sending
)
mpi_type = MPI.FLOAT.Create_subarray(shape.tolist(), subshape.tolist(), starts.tolist())
mpi_type.Commit()
return mpi_type
class Grass:
"""Geometry information for blades of grass."""
def __init__(self, numblades, seed):
"""
Args:
numblades: int for the number of blades of grass.
seed: int for seed value for random number generator.
"""
self.numblades = numblades
self.geometryparams = np.zeros(
(self.numblades, 6), dtype=config.sim_config.dtypes["float_or_double"]
)
self.seed = seed
self.set_geometry_parameters()
def set_geometry_parameters(self):
"""Sets randomly defined parameters that will be used to calculate
blade and root geometries.
"""
self.R1 = np.random.default_rng(seed=self.seed)
self.R2 = np.random.default_rng(seed=self.seed)
self.R3 = np.random.default_rng(seed=self.seed)
self.R4 = np.random.default_rng(seed=self.seed)
self.R5 = np.random.default_rng(seed=self.seed)
self.R6 = np.random.default_rng(seed=self.seed)
for i in range(self.numblades):
self.geometryparams[i, 0] = 10 + 20 * self.R1.random()
self.geometryparams[i, 1] = 10 + 20 * self.R2.random()
self.geometryparams[i, 2] = self.R3.choice([-1, 1])
self.geometryparams[i, 3] = self.R4.choice([-1, 1])
def calculate_blade_geometry(self, blade, height):
"""Calculates the x and y coordinates for a given height of grass blade.
Args:
blade: int for the numeric ID of grass blade.
height: float for the height of grass blade.
Returns:
x, y: floats for the x and y coordinates of grass blade.
"""
x = (
self.geometryparams[blade, 2]
* (height / self.geometryparams[blade, 0])
* (height / self.geometryparams[blade, 0])
)
y = (
self.geometryparams[blade, 3]
* (height / self.geometryparams[blade, 1])
* (height / self.geometryparams[blade, 1])
)
x = round_value(x)
y = round_value(y)
return x, y
def calculate_root_geometry(self, root, depth):
"""Calculates the x and y coordinates for a given depth of grass root.
Args:
root: int for the umeric ID of grass root.
depth: float for the depth of grass root.
Returns:
x, y: floats for the x and y coordinates of grass root.
"""
self.geometryparams[root, 4] += -1 + 2 * self.R5.random()
self.geometryparams[root, 5] += -1 + 2 * self.R6.random()
x = round(self.geometryparams[root, 4])
y = round(self.geometryparams[root, 5])
return x, y