你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-07 23:14:03 +08:00
191 行
7.6 KiB
Python
191 行
7.6 KiB
Python
# Copyright (C) 2015-2021: The University of Edinburgh
|
|
# Authors: Craig Warren and Antonis Giannopoulos
|
|
#
|
|
# This file is part of gprMax.
|
|
#
|
|
# gprMax is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# gprMax is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
import logging
|
|
from pathlib import Path
|
|
from string import Template
|
|
|
|
import h5py
|
|
|
|
from ._version import __version__
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def store_outputs(G):
|
|
"""Stores field component values for every receiver and transmission line.
|
|
|
|
Args:
|
|
iteration (int): Current iteration number.
|
|
Ex, Ey, Ez, Hx, Hy, Hz (memory view): Current electric and magnetic
|
|
field values.
|
|
G (FDTDGrid): Parameters describing a grid in a model.
|
|
"""
|
|
|
|
iteration = G.iteration
|
|
Ex, Ey, Ez, Hx, Hy, Hz = G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz
|
|
|
|
for rx in G.rxs:
|
|
for output in rx.outputs:
|
|
# Store electric or magnetic field components
|
|
if 'I' not in output:
|
|
field = locals()[output]
|
|
rx.outputs[output][iteration] = field[rx.xcoord, rx.ycoord, rx.zcoord]
|
|
# Store current component
|
|
else:
|
|
func = globals()[output]
|
|
rx.outputs[output][iteration] = func(rx.xcoord, rx.ycoord, rx.zcoord,
|
|
Hx, Hy, Hz, G)
|
|
|
|
for tl in G.transmissionlines:
|
|
tl.Vtotal[iteration] = tl.voltage[tl.antpos]
|
|
tl.Itotal[iteration] = tl.current[tl.antpos]
|
|
|
|
|
|
kernel_template_store_outputs = Template("""
|
|
|
|
// Macros for converting subscripts to linear index:
|
|
#define INDEX2D_RXCOORDS(m, n) (m)*($NY_RXCOORDS)+(n)
|
|
#define INDEX3D_RXS(i, j, k) (i)*($NY_RXS)*($NZ_RXS)+(j)*($NZ_RXS)+(k)
|
|
#define INDEX3D_FIELDS(i, j, k) (i)*($NY_FIELDS)*($NZ_FIELDS)+(j)*($NZ_FIELDS)+(k)
|
|
|
|
//////////////////////////////////////////////////////
|
|
// Stores field component values for every receiver //
|
|
//////////////////////////////////////////////////////
|
|
|
|
__global__ void store_outputs(int NRX, int iteration, const int* __restrict__ rxcoords, $REAL *rxs, const $REAL* __restrict__ Ex, const $REAL* __restrict__ Ey, const $REAL* __restrict__ Ez, const $REAL* __restrict__ Hx, const $REAL* __restrict__ Hy, const $REAL* __restrict__ Hz) {
|
|
|
|
// This function stores field component values for every receiver in the model.
|
|
//
|
|
// Args:
|
|
// NRX: Total number of receivers in the model
|
|
// rxs: Array to store field components for receivers - rows are field components; columns are iterations; pages are receivers
|
|
// E, H: Access to field component arrays
|
|
|
|
// Obtain the linear index corresponding to the current thread and use for each receiver
|
|
int rx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
int i, j, k;
|
|
|
|
if (rx < NRX) {
|
|
i = rxcoords[INDEX2D_RXCOORDS(rx,0)];
|
|
j = rxcoords[INDEX2D_RXCOORDS(rx,1)];
|
|
k = rxcoords[INDEX2D_RXCOORDS(rx,2)];
|
|
rxs[INDEX3D_RXS(0,iteration,rx)] = Ex[INDEX3D_FIELDS(i,j,k)];
|
|
rxs[INDEX3D_RXS(1,iteration,rx)] = Ey[INDEX3D_FIELDS(i,j,k)];
|
|
rxs[INDEX3D_RXS(2,iteration,rx)] = Ez[INDEX3D_FIELDS(i,j,k)];
|
|
rxs[INDEX3D_RXS(3,iteration,rx)] = Hx[INDEX3D_FIELDS(i,j,k)];
|
|
rxs[INDEX3D_RXS(4,iteration,rx)] = Hy[INDEX3D_FIELDS(i,j,k)];
|
|
rxs[INDEX3D_RXS(5,iteration,rx)] = Hz[INDEX3D_FIELDS(i,j,k)];
|
|
}
|
|
}
|
|
|
|
""")
|
|
|
|
|
|
def write_hdf5_outputfile(outputfile, G):
|
|
"""Write an output file in HDF5 (.h5) format.
|
|
|
|
Args:
|
|
outputfile (str): Name of the output file.
|
|
G (FDTDGrid): Parameters describing a grid in a model.
|
|
"""
|
|
|
|
# Check for any receivers in subgrids
|
|
sg_rxs = [True for sg in G.subgrids if sg.rxs]
|
|
|
|
# Create output file and write top-level meta data
|
|
if G.rxs or sg_rxs:
|
|
f = h5py.File(outputfile, 'w')
|
|
f.attrs['gprMax'] = __version__
|
|
f.attrs['Title'] = G.title
|
|
|
|
# Write meta data and data for main grid
|
|
if G.rxs:
|
|
write_grid(f, G)
|
|
|
|
# Write meta data and data for any subgrids
|
|
if sg_rxs:
|
|
for sg in G.subgrids:
|
|
grp = f.create_group('/subgrids/' + sg.name)
|
|
write_grid(grp, sg, is_subgrid=True)
|
|
|
|
if G.rxs or sg_rxs:
|
|
logger.basic(f'Written output file: {outputfile.name}')
|
|
|
|
|
|
def write_grid(basegrp, G, is_subgrid=False):
|
|
"""Write grid meta data and data to HDF5 group.
|
|
|
|
Args:
|
|
basegrp (dict): HDF5 group.
|
|
G (FDTDGrid): Parameters describing a grid in a model.
|
|
is_subgrid (bool): Is grid instance the main grid or a subgrid.
|
|
"""
|
|
|
|
# Write meta data for grid
|
|
basegrp.attrs['Iterations'] = G.iterations
|
|
basegrp.attrs['nx_ny_nz'] = (G.nx, G.ny, G.nz)
|
|
basegrp.attrs['dx_dy_dz'] = (G.dx, G.dy, G.dz)
|
|
basegrp.attrs['dt'] = G.dt
|
|
nsrc = len(G.voltagesources + G.hertziandipoles + G.magneticdipoles + G.transmissionlines)
|
|
basegrp.attrs['nsrc'] = nsrc
|
|
basegrp.attrs['nrx'] = len(G.rxs)
|
|
basegrp.attrs['srcsteps'] = G.srcsteps
|
|
basegrp.attrs['rxsteps'] = G.rxsteps
|
|
|
|
if is_subgrid:
|
|
# Write additional meta data about subgrid
|
|
basegrp.attrs['is_os_sep'] = G.is_os_sep
|
|
basegrp.attrs['pml_separation'] = G.pml_separation
|
|
basegrp.attrs['subgrid_pml_thickness'] = G.pmlthickness['x0']
|
|
basegrp.attrs['filter'] = G.filter
|
|
basegrp.attrs['ratio'] = G.ratio
|
|
basegrp.attrs['interpolation'] = G.interpolation
|
|
|
|
# Create group for sources (except transmission lines); add type and positional data attributes
|
|
srclist = G.voltagesources + G.hertziandipoles + G.magneticdipoles
|
|
for srcindex, src in enumerate(srclist):
|
|
grp = basegrp.create_group('srcs/src' + str(srcindex + 1))
|
|
grp.attrs['Type'] = type(src).__name__
|
|
grp.attrs['Position'] = (src.xcoord * G.dx, src.ycoord * G.dy, src.zcoord * G.dz)
|
|
|
|
# Create group for transmission lines; add positional data, line resistance and
|
|
# line discretisation attributes; write arrays for line voltages and currents
|
|
for tlindex, tl in enumerate(G.transmissionlines):
|
|
grp = basegrp.create_group('tls/tl' + str(tlindex + 1))
|
|
grp.attrs['Position'] = (tl.xcoord * G.dx, tl.ycoord * G.dy, tl.zcoord * G.dz)
|
|
grp.attrs['Resistance'] = tl.resistance
|
|
grp.attrs['dl'] = tl.dl
|
|
# Save incident voltage and current
|
|
grp['Vinc'] = tl.Vinc
|
|
grp['Iinc'] = tl.Iinc
|
|
# Save total voltage and current
|
|
basegrp['tls/tl' + str(tlindex + 1) + '/Vtotal'] = tl.Vtotal
|
|
basegrp['tls/tl' + str(tlindex + 1) + '/Itotal'] = tl.Itotal
|
|
|
|
# Create group, add positional data and write field component arrays for receivers
|
|
for rxindex, rx in enumerate(G.rxs):
|
|
grp = basegrp.create_group('rxs/rx' + str(rxindex + 1))
|
|
if rx.ID:
|
|
grp.attrs['Name'] = rx.ID
|
|
grp.attrs['Position'] = (rx.xcoord * G.dx, rx.ycoord * G.dy, rx.zcoord * G.dz)
|
|
|
|
for output in rx.outputs:
|
|
basegrp['rxs/rx' + str(rxindex + 1) + '/' + output] = rx.outputs[output]
|