文件
gprMax/gprMax/optimisation_taguchi.py
2019-01-04 09:25:37 +00:00

491 行
20 KiB
Python

# Copyright (C) 2015-2019: The University of Edinburgh
# Authors: Craig Warren and Antonis Giannopoulos
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
from collections import OrderedDict
import datetime
from importlib import import_module
import os
import pickle
import sys
from time import perf_counter
from colorama import init, Fore, Style
init()
import numpy as np
from gprMax.constants import floattype
from gprMax.exceptions import CmdInputError
from gprMax.gprMax import run_std_sim
from gprMax.gprMax import run_mpi_sim
from gprMax.utilities import get_terminal_width
from gprMax.utilities import open_path_file
def run_opt_sim(args, inputfile, usernamespace):
"""Run a simulation using Taguchi's optmisation process.
Args:
args (dict): Namespace with command line arguments
inputfile (object): File object for the input file.
usernamespace (dict): Namespace that can be accessed by user
in any Python code blocks in input file.
"""
tsimstart = perf_counter()
if args.n > 1:
raise CmdInputError('When a Taguchi optimisation is being carried out the number of model runs argument is not required')
inputfileparts = os.path.splitext(inputfile.name)
# Default maximum number of iterations of optimisation to perform (used
# if the stopping criterion is not achieved)
maxiterations = 20
# Process Taguchi code blocks in the input file; pass in ordered
# dictionary to hold parameters to optimise
tmp = usernamespace.copy()
tmp.update({'optparams': OrderedDict()})
taguchinamespace = taguchi_code_blocks(inputfile, tmp)
# Extract dictionaries and variables containing initialisation parameters
optparams = taguchinamespace['optparams']
fitness = taguchinamespace['fitness']
if 'maxiterations' in taguchinamespace:
maxiterations = taguchinamespace['maxiterations']
# Store initial parameter ranges
optparamsinit = list(optparams.items())
# Dictionary to hold history of optmised values of parameters
optparamshist = OrderedDict((key, list()) for key in optparams)
# Import specified fitness function
fitness_metric = getattr(import_module('user_libs.optimisation_taguchi.fitness_functions'), fitness['name'])
# Select OA
OA, N, cols, k, s, t = construct_OA(optparams)
taguchistr = '\n--- Taguchi optimisation'
print('{} {}\n'.format(taguchistr, '-' * (get_terminal_width() - 1 - len(taguchistr))))
print('Orthogonal array: {:g} experiments per iteration, {:g} parameters ({:g} will be used), {:g} levels, and strength {:g}'.format(N, cols, k, s, t))
tmp = [(k, v) for k, v in optparams.items()]
print('Parameters to optimise with ranges: {}'.format(str(tmp).strip('[]')))
print('Output name(s) from model: {}'.format(fitness['args']['outputs']))
print('Fitness function "{}" with stopping criterion {:g}'.format(fitness['name'], fitness['stop']))
print('Maximum iterations: {:g}'.format(maxiterations))
# Initialise arrays and lists to store parameters required throughout optimisation
# Lower, central, and upper values for each parameter
levels = np.zeros((s, k), dtype=floattype)
# Optimal lower, central, or upper value for each parameter
levelsopt = np.zeros(k, dtype=np.uint8)
# Difference used to set values for levels
levelsdiff = np.zeros(k, dtype=floattype)
# History of fitness values from each confirmation experiment
fitnessvalueshist = []
iteration = 0
while iteration < maxiterations:
# Reset number of model runs to number of experiments
args.n = N
usernamespace['number_model_runs'] = N
# Fitness values for each experiment
fitnessvalues = []
# Set parameter ranges and define experiments
optparams, levels, levelsdiff = calculate_ranges_experiments(optparams, optparamsinit, levels, levelsopt, levelsdiff, OA, N, k, s, iteration)
# Run model for each experiment
# Mixed mode MPI with OpenMP or CUDA - MPI task farm for models with
# each model parallelised with OpenMP (CPU) or CUDA (GPU)
if args.mpi:
run_mpi_sim(args, inputfile, usernamespace, optparams)
# Standard behaviour - models run serially with each model parallelised
# with OpenMP (CPU) or CUDA (GPU)
else:
run_std_sim(args, inputfile, usernamespace, optparams)
# Calculate fitness value for each experiment
for experiment in range(1, N + 1):
outputfile = inputfileparts[0] + str(experiment) + '.out'
fitnessvalues.append(fitness_metric(outputfile, fitness['args']))
os.remove(outputfile)
taguchistr = '\n--- Taguchi optimisation, iteration {}: {} initial experiments with fitness values {}.'.format(iteration + 1, N, fitnessvalues)
print('{} {}\n'.format(taguchistr, '-' * (get_terminal_width() - 1 - len(taguchistr))))
# Calculate optimal levels from fitness values by building a response
# table; update dictionary of parameters with optimal values
optparams, levelsopt = calculate_optimal_levels(optparams, levels, levelsopt, fitnessvalues, OA, N, k)
# Update dictionary with history of parameters with optimal values
for key, value in optparams.items():
optparamshist[key].append(value[0])
# Run a confirmation experiment with optimal values
args.n = 1
usernamespace['number_model_runs'] = 1
# Mixed mode MPI with OpenMP or CUDA - MPI task farm for models with
# each model parallelised with OpenMP (CPU) or CUDA (GPU)
if args.mpi:
run_mpi_sim(args, inputfile, usernamespace, optparams)
# Standard behaviour - models run serially with each model parallelised
# with OpenMP (CPU) or CUDA (GPU)
else:
run_std_sim(args, inputfile, usernamespace, optparams)
# Calculate fitness value for confirmation experiment
outputfile = inputfileparts[0] + '.out'
fitnessvalueshist.append(fitness_metric(outputfile, fitness['args']))
# Rename confirmation experiment output file so that it is retained for each iteraction
os.rename(outputfile, os.path.splitext(outputfile)[0] + '_final' + str(iteration + 1) + '.out')
taguchistr = '\n--- Taguchi optimisation, iteration {} completed. History of optimal parameter values {} and of fitness values {}'.format(iteration + 1, dict(optparamshist), fitnessvalueshist)
print('{} {}\n'.format(taguchistr, '-' * (get_terminal_width() - 1 - len(taguchistr))))
iteration += 1
# Stop optimisation if stopping criterion has been reached
if fitnessvalueshist[iteration - 1] > fitness['stop']:
taguchistr = '\n--- Taguchi optimisation stopped as fitness criteria reached: {:g} > {:g}'.format(fitnessvalueshist[iteration - 1], fitness['stop'])
print('{} {}\n'.format(taguchistr, '-' * (get_terminal_width() - 1 - len(taguchistr))))
break
# Stop optimisation if successive fitness values are within a percentage threshold
fitnessvaluesthres = 0.1
if iteration > 2:
fitnessvaluesclose = (np.abs(fitnessvalueshist[iteration - 2] - fitnessvalueshist[iteration - 1]) / fitnessvalueshist[iteration - 1]) * 100
if fitnessvaluesclose < fitnessvaluesthres:
taguchistr = '\n--- Taguchi optimisation stopped as successive fitness values within {}%'.format(fitnessvaluesthres)
print('{} {}\n'.format(taguchistr, '-' * (get_terminal_width() - 1 - len(taguchistr))))
break
tsimend = perf_counter()
# Save optimisation parameters history and fitness values history to file
opthistfile = inputfileparts[0] + '_hist.pickle'
with open(opthistfile, 'wb') as f:
pickle.dump(optparamshist, f)
pickle.dump(fitnessvalueshist, f)
pickle.dump(optparamsinit, f)
taguchistr = '\n=== Taguchi optimisation completed in [HH:MM:SS]: {} after {} iteration(s)'.format(datetime.timedelta(seconds=int(tsimend - tsimstart)), iteration)
print('{} {}\n'.format(taguchistr, '=' * (get_terminal_width() - 1 - len(taguchistr))))
print('History of optimal parameter values {} and of fitness values {}\n'.format(dict(optparamshist), fitnessvalueshist))
def taguchi_code_blocks(inputfile, taguchinamespace):
"""
Looks for and processes a Taguchi code block (containing Python code) in
the input file. It will ignore any lines that are comments, i.e. begin
with a double hash (##), and any blank lines.
Args:
inputfile (object): File object for the input file.
taguchinamespace (dict): Namespace that can be accessed by user a
Taguchi code block in input file.
Returns:
processedlines (list): Input commands after Python processing.
"""
# Strip out any newline characters and comments that must begin with double hashes
inputlines = [line.rstrip() for line in inputfile if(not line.startswith('##') and line.rstrip('\n'))]
# Rewind input file in preparation for passing to standard command reading function
inputfile.seek(0)
# Store length of dict
taglength = len(taguchinamespace)
x = 0
while(x < len(inputlines)):
if(inputlines[x].startswith('#taguchi:')):
# String to hold Python code to be executed
taguchicode = ''
x += 1
while not inputlines[x].startswith('#end_taguchi:'):
# Add all code in current code block to string
taguchicode += inputlines[x] + '\n'
x += 1
if x == len(inputlines):
raise CmdInputError('Cannot find the end of the Taguchi code block, i.e. missing #end_taguchi: command.')
# Compile code for faster execution
taguchicompiledcode = compile(taguchicode, '<string>', 'exec')
# Execute code block & make available only usernamespace
exec(taguchicompiledcode, taguchinamespace)
x += 1
# Check if any Taguchi code blocks were found
if len(taguchinamespace) == taglength:
raise CmdInputError('No #taguchi and #end_taguchi code blocks found.')
return taguchinamespace
def construct_OA(optparams):
"""
Load an orthogonal array (OA) from a numpy file. Configure and
return OA and properties of OA.
Args:
optparams (dict): Dictionary containing name of parameters to
optimise and their initial ranges
Returns:
OA (array): Orthogonal array
N (int): Number of experiments in OA
cols (int): Number of columns in OA
k (int): Number of columns in OA cut down to number of parameters to optimise
s (int): Number of levels in OA
t (int): Strength of OA
"""
oadirectory = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir, 'user_libs', 'optimisation_taguchi')
oadirectory = os.path.abspath(oadirectory)
# Properties of the orthogonal array (OA)
# Strength
t = 2
# Number of levels
s = 3
# Number of parameters to optimise
k = len(optparams)
# Load the appropriate OA
if k <= 4:
OA = np.load(os.path.join(oadirectory, 'OA_9_4_3_2.npy'))
# Number of experiments
N = OA.shape[0]
# Number of columns of OA before cut down
cols = OA.shape[1]
# Cut down OA columns to number of parameters to optimise
OA = OA[:, 0:k]
elif k <= 7:
OA = np.load(os.path.join(oadirectory, 'OA_18_7_3_2.npy'))
# Number of experiments
N = OA.shape[0]
# Number of columns of OA before cut down
cols = OA.shape[1]
# Cut down OA columns to number of parameters to optimise
OA = OA[:, 0:k]
else:
# THIS CASE NEEDS FURTHER TESTING
print(Fore.RED + 'WARNING: Optimising more than 7 parameters is currently an experimental feature!' + Style.RESET_ALL)
p = int(np.ceil(np.log(k * (s - 1) + 1) / np.log(s)))
# Number of experiments
N = s**p
# Number of columns
cols = int((N - 1) / (s - 1))
# Algorithm to construct OA from:
# http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6812898
OA = np.zeros((N + 1, cols + 1), dtype=np.int8)
# Construct basic columns
for ii in range(1, p + 1):
col = int((s**(ii - 1) - 1) / (s - 1) + 1)
for row in range(1, N + 1):
OA[row, col] = np.mod(np.floor((row - 1) / (s**(p - ii))), s)
# Construct non-basic columns
for ii in range(2, p + 1):
col = int((s**(ii - 1) - 1) / (s - 1) + 1)
for jj in range(1, col):
for kk in range(1, s):
OA[:, col + (jj - 1) * (s - 1) + kk] = np.mod(OA[:, jj] * kk + OA[:, col], s)
# First row and first columns are unneccessary, only there to
# match algorithm, and cut down columns to number of parameters to optimise
OA = OA[1:, 1:k + 1]
return OA, N, cols, k, s, t
def calculate_ranges_experiments(optparams, optparamsinit, levels, levelsopt, levelsdiff, OA, N, k, s, i):
"""Calculate values for parameters to optimise for a set of experiments.
Args:
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
optparamsinit (list): Initial ranges for parameters to optimise
levels (array): Lower, central, and upper values for each parameter
levelsopt (array): Optimal level for each parameter from previous iteration
levelsdiff (array): Difference used to set values in levels array
OA (array): Orthogonal array
N (int): Number of experiments in OA
k (int): Number of parameters to optimise in OA
s (int): Number of levels in OA
i (int): Iteration number
Returns:
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
levels (array): Lower, central, and upper values for each parameter
levelsdiff (array): Difference used to set values in levels array
"""
# Gaussian reduction function used for calculating levels
T = 18 # Usually values between 15 - 20
RR = np.exp(-(i / T)**2)
# Calculate levels for each parameter
for p in range(k):
# Set central level for first iteration to midpoint of initial range and don't use RR
if i == 0:
levels[1, p] = ((optparamsinit[p][1][1] - optparamsinit[p][1][0]) / 2) + optparamsinit[p][1][0]
levelsdiff[p] = (optparamsinit[p][1][1] - optparamsinit[p][1][0]) / (s + 1)
# Set central level to optimum from previous iteration
else:
levels[1, p] = levels[levelsopt[p], p]
levelsdiff[p] = RR * levelsdiff[p]
# Set levels if below initial range
if levels[1, p] - levelsdiff[p] < optparamsinit[p][1][0]:
levels[0, p] = optparamsinit[p][1][0]
levels[1, p] = optparamsinit[p][1][0] + levelsdiff[p]
levels[2, p] = optparamsinit[p][1][0] + 2 * levelsdiff[p]
# Set levels if above initial range
elif levels[1, p] + levelsdiff[p] > optparamsinit[p][1][1]:
levels[0, p] = optparamsinit[p][1][1] - 2 * levelsdiff[p]
levels[1, p] = optparamsinit[p][1][1] - levelsdiff[p]
levels[2, p] = optparamsinit[p][1][1]
# Set levels normally
else:
levels[0, p] = levels[1, p] - levelsdiff[p]
levels[2, p] = levels[1, p] + levelsdiff[p]
# Update dictionary of parameters to optimise with lists of new values; clear dictionary first
optparams = OrderedDict((key, list()) for key in optparams)
p = 0
for key, value in optparams.items():
for exp in range(N):
if OA[exp, p] == 0:
optparams[key].append(levels[0, p])
elif OA[exp, p] == 1:
optparams[key].append(levels[1, p])
elif OA[exp, p] == 2:
optparams[key].append(levels[2, p])
p += 1
return optparams, levels, levelsdiff
def calculate_optimal_levels(optparams, levels, levelsopt, fitnessvalues, OA, N, k):
"""Calculate optimal levels from results of fitness metric by building a response table.
Args:
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
levels (array): Lower, central, and upper values for each parameter
levelsopt (array): Optimal level for each parameter from previous iteration
fitnessvalues (list): Values from results of fitness metric
OA (array): Orthogonal array
N (int): Number of experiments in OA
k (int): Number of parameters to optimise in OA
Returns:
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
levelsopt (array): Optimal level for each parameter from previous iteration
"""
# Build a table of responses based on the results of the fitness metric
for p in range(k):
responses = np.zeros(3, dtype=floattype)
cnt1 = 0
cnt2 = 0
cnt3 = 0
for exp in range(N):
if OA[exp, p] == 0:
responses[0] += fitnessvalues[exp]
cnt1 += 1
elif OA[exp, p] == 1:
responses[1] += fitnessvalues[exp]
cnt2 += 1
elif OA[exp, p] == 2:
responses[2] += fitnessvalues[exp]
cnt3 += 1
responses[0] /= cnt1
responses[1] /= cnt2
responses[2] /= cnt3
# Calculate optimal level from table of responses
optlevel = np.where(responses == np.amax(responses))[0]
# If 2 experiments produce the same fitness value pick first level
# (this shouldn't happen if the fitness function is designed correctly)
if len(optlevel) > 1:
optlevel = optlevel[0]
levelsopt[p] = optlevel
# Update dictionary of parameters to optimise with lists of new values; clear dictionary first
optparams = OrderedDict((key, list()) for key in optparams)
p = 0
for key, value in optparams.items():
optparams[key].append(levels[levelsopt[p], p])
p += 1
return optparams, levelsopt
def plot_optimisation_history(fitnessvalueshist, optparamshist, optparamsinit):
"""Plot the history of fitness values and each optimised parameter values for the optimisation.
Args:
fitnessvalueshist (list): History of fitness values
optparamshist (dict): Name of parameters to optimise and history of their values
"""
import matplotlib.pyplot as plt
# Plot history of fitness values
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Fitness value'), num='History of fitness values', figsize=(20, 10), facecolor='w', edgecolor='w')
iterations = np.arange(1, len(fitnessvalueshist) + 1)
ax.plot(iterations, fitnessvalueshist, 'r', marker='.', ms=15, lw=1)
ax.set_xlim(1, len(fitnessvalueshist))
ax.grid()
# Plot history of optimisation parameters
p = 0
for key, value in optparamshist.items():
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Parameter value'), num='History of ' + key + ' parameter', figsize=(20, 10), facecolor='w', edgecolor='w')
ax.plot(iterations, optparamshist[key], 'r', marker='.', ms=15, lw=1)
ax.set_xlim(1, len(fitnessvalueshist))
ax.set_ylim(optparamsinit[p][1][0], optparamsinit[p][1][1])
ax.grid()
p += 1
plt.show()