你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 12:36:51 +08:00
146 行
7.7 KiB
Python
146 行
7.7 KiB
Python
# Copyright (C) 2015-2016: The University of Edinburgh
|
|
# Authors: Craig Warren and Antonis Giannopoulos
|
|
#
|
|
# This file is part of gprMax.
|
|
#
|
|
# gprMax is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# gprMax is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
import sys
|
|
import numpy as np
|
|
from struct import pack
|
|
|
|
from gprMax.constants import floattype
|
|
from gprMax.utilities import roundvalue
|
|
|
|
|
|
class Snapshot:
|
|
"""Snapshots of the electric and magnetic field values."""
|
|
|
|
# Set string for byte order
|
|
if sys.byteorder == 'little':
|
|
byteorder = 'LittleEndian'
|
|
else:
|
|
byteorder = 'BigEndian'
|
|
|
|
# Set format text and string depending on float type
|
|
if np.dtype(floattype).name == 'float32':
|
|
floatname = 'Float32'
|
|
floatstring = 'f'
|
|
elif np.dtype(floattype).name == 'float64':
|
|
floatname = 'Float64'
|
|
floatstring = 'd'
|
|
|
|
def __init__(self, xs=None, ys=None, zs=None, xf=None, yf=None, zf=None, dx=None, dy=None, dz=None, time=None, filename=None):
|
|
"""
|
|
Args:
|
|
xs, xf, ys, yf, zs, zf (float): Extent of the volume.
|
|
dx, dy, dz (float): Spatial discretisation.
|
|
time (int): Iteration number to take the snapshot on.
|
|
filename (str): Filename to save to.
|
|
"""
|
|
|
|
self.xs = xs
|
|
self.ys = ys
|
|
self.zs = zs
|
|
self.xf = xf
|
|
self.yf = yf
|
|
self.zf = zf
|
|
self.dx = dx
|
|
self.dy = dy
|
|
self.dz = dz
|
|
self.time = time
|
|
self.filename = filename
|
|
|
|
def prepare_file(self, modelrun, numbermodelruns, G):
|
|
"""Prepares a VTK ImageData (.vti) file for a snapshot.
|
|
|
|
Args:
|
|
modelrun (int): Current model run number.
|
|
numbermodelruns (int): Total number of model runs.
|
|
G (class): Grid class instance - holds essential parameters describing the model.
|
|
"""
|
|
|
|
# No Python 3 support for VTK at time of writing (03/2015)
|
|
self.vtk_nx = self.xf - self.xs
|
|
self.vtk_ny = self.yf - self.ys
|
|
self.vtk_nz = self.zf - self.zs
|
|
|
|
# Construct filename from user-supplied name and model run number
|
|
if numbermodelruns == 1:
|
|
self.filename = G.inputdirectory + self.filename + '.vti'
|
|
else:
|
|
self.filename = G.inputdirectory + self.filename + '_' + str(modelrun) + '.vti'
|
|
|
|
# Calculate number of cells according to requested sampling
|
|
self.vtk_xscells = roundvalue(self.xs / self.dx)
|
|
self.vtk_xfcells = roundvalue(self.xf / self.dx)
|
|
self.vtk_yscells = roundvalue(self.ys / self.dy)
|
|
self.vtk_yfcells = roundvalue(self.yf / self.dz)
|
|
self.vtk_zscells = roundvalue(self.zs / self.dz)
|
|
self.vtk_zfcells = roundvalue(self.zf / self.dz)
|
|
vtk_hfield_offset = 3 * np.dtype(floattype).itemsize * (self.vtk_xfcells - self.vtk_xscells) * (self.vtk_yfcells - self.vtk_yscells) * (self.vtk_zfcells - self.vtk_zscells) + np.dtype(np.uint32).itemsize
|
|
# vtk_current_offset = 2 * vtk_hfield_offset
|
|
|
|
self.filehandle = open(self.filename, 'wb')
|
|
self.filehandle.write('<?xml version="1.0"?>\n'.encode('utf-8'))
|
|
self.filehandle.write('<VTKFile type="ImageData" version="1.0" byte_order="{}">\n'.format(Snapshot.byteorder).encode('utf-8'))
|
|
self.filehandle.write('<ImageData WholeExtent="{} {} {} {} {} {}" Origin="0 0 0" Spacing="{:.3} {:.3} {:.3}">\n'.format(self.vtk_xscells, self.vtk_xfcells, self.vtk_yscells, self.vtk_yfcells, self.vtk_zscells, self.vtk_zfcells, self.dx * G.dx, self.dy * G.dy, self.dz * G.dz).encode('utf-8'))
|
|
self.filehandle.write('<Piece Extent="{} {} {} {} {} {}">\n'.format(self.vtk_xscells, self.vtk_xfcells, self.vtk_yscells, self.vtk_yfcells, self.vtk_zscells, self.vtk_zfcells).encode('utf-8'))
|
|
self.filehandle.write('<CellData Vectors="E-field H-field">\n'.encode('utf-8'))
|
|
# self.filehandle.write('<CellData Vectors="E-field H-field Current">\n'.encode('utf-8'))
|
|
self.filehandle.write('<DataArray type="{}" Name="E-field" NumberOfComponents="3" format="appended" offset="0" />\n'.format(Snapshot.floatname).encode('utf-8'))
|
|
self.filehandle.write('<DataArray type="{}" Name="H-field" NumberOfComponents="3" format="appended" offset="{}" />\n'.format(Snapshot.floatname, vtk_hfield_offset).encode('utf-8'))
|
|
# self.filehandle.write('<DataArray type="{}" Name="Current" NumberOfComponents="3" format="appended" offset="{}" />\n'.format(Snapshot.floatname, vtk_current_offset).encode('utf-8'))
|
|
self.filehandle.write('</CellData>\n</Piece>\n</ImageData>\n<AppendedData encoding="raw">\n_'.encode('utf-8'))
|
|
|
|
def write_snapshot(self, Ex, Ey, Ez, Hx, Hy, Hz, G):
|
|
"""Writes electric and magnetic field values to VTK ImageData (.vti) file.
|
|
|
|
Args:
|
|
Ex, Ey, Ez, Hx, Hy, Hz (memory view): Electric and magnetic field values.
|
|
G (class): Grid class instance - holds essential parameters describing the model.
|
|
"""
|
|
|
|
datasize = 3 * np.dtype(floattype).itemsize * (self.vtk_xfcells - self.vtk_xscells) * (self.vtk_yfcells - self.vtk_yscells) * (self.vtk_zfcells - self.vtk_zscells)
|
|
# Write number of bytes of appended data as UInt32
|
|
self.filehandle.write(pack('I', datasize))
|
|
for k in range(self.zs, self.zf, self.dz):
|
|
for j in range(self.ys, self.yf, self.dy):
|
|
for i in range(self.xs, self.xf, self.dx):
|
|
# The electric field component value at a point comes from average of the 4 electric field component values in that cell
|
|
self.filehandle.write(pack(Snapshot.floatstring, (Ex[i, j, k] + Ex[i, j + 1, k] + Ex[i, j, k + 1] + Ex[i, j + 1, k + 1]) / 4))
|
|
self.filehandle.write(pack(Snapshot.floatstring, (Ey[i, j, k] + Ey[i + 1, j, k] + Ey[i, j, k + 1] + Ey[i + 1, j, k + 1]) / 4))
|
|
self.filehandle.write(pack(Snapshot.floatstring, (Ez[i, j, k] + Ez[i + 1, j, k] + Ez[i, j + 1, k] + Ez[i + 1, j + 1, k]) / 4))
|
|
|
|
self.filehandle.write(pack('I', datasize))
|
|
for k in range(self.zs, self.zf, self.dz):
|
|
for j in range(self.ys, self.yf, self.dy):
|
|
for i in range(self.xs, self.xf, self.dx):
|
|
# The magnetic field component value at a point comes from average of 2 magnetic field component values in that cell and the following cell
|
|
self.filehandle.write(pack(Snapshot.floatstring, (Hx[i, j, k] + Hx[i + 1, j, k]) / 2))
|
|
self.filehandle.write(pack(Snapshot.floatstring, (Hy[i, j, k] + Hy[i, j + 1, k]) / 2))
|
|
self.filehandle.write(pack(Snapshot.floatstring, (Hz[i, j, k] + Hz[i, j, k + 1]) / 2))
|
|
|
|
# self.filehandle.write(pack('I', datasize))
|
|
# for k in range(self.zs, self.zf, self.dz):
|
|
# for j in range(self.ys, self.yf, self.dy):
|
|
# for i in range(self.xs, self.xf, self.dx):
|
|
# self.filehandle.write(pack(Snapshot.floatstring, Ix[i, j, k]))
|
|
# self.filehandle.write(pack(Snapshot.floatstring, Iy[i, j, k]))
|
|
# self.filehandle.write(pack(Snapshot.floatstring, Iz[i, j, k]))
|
|
|
|
self.filehandle.write('\n</AppendedData>\n</VTKFile>'.encode('utf-8'))
|
|
self.filehandle.close()
|
|
|