文件
gprMax/gprMax/cuda_opencl/knl_pml_updates_electric_HORIPML.py
2024-01-04 10:38:46 +00:00

1246 行
50 KiB
Python

# Copyright (C) 2015-2024: The University of Edinburgh, United Kingdom
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
from string import Template
x_args = {
"cuda": Template(
"""
__global__ void $FUNC(int xs,
int xf,
int ys,
int yf,
int zs,
int zf,
int NX_PHI1,
int NY_PHI1,
int NZ_PHI1,
int NX_PHI2,
int NY_PHI2,
int NZ_PHI2,
int NY_R,
const unsigned int* __restrict__ ID,
const $REAL* __restrict__ Ex,
$REAL *Ey,
$REAL *Ez,
const $REAL* __restrict__ Hx,
const $REAL* __restrict__ Hy,
const $REAL* __restrict__ Hz,
$REAL *PHI1,
$REAL *PHI2,
const $REAL* __restrict__ RA,
const $REAL* __restrict__ RB,
const $REAL* __restrict__ RE,
const $REAL* __restrict__ RF,
$REAL d)
"""
),
"opencl": Template(
"""
int xs,
int xf,
int ys,
int yf,
int zs,
int zf,
int NX_PHI1,
int NY_PHI1,
int NZ_PHI1,
int NX_PHI2,
int NY_PHI2,
int NZ_PHI2,
int NY_R,
__global const unsigned int* restrict ID,
__global const $REAL* restrict Ex,
__global $REAL *Ey,
__global $REAL *Ez,
__global const $REAL* restrict Hx,
__global const $REAL* restrict Hy,
__global const $REAL* restrict Hz,
__global $REAL *PHI1,
__global $REAL *PHI2,
__global const $REAL* restrict RA,
__global const $REAL* restrict RB,
__global const $REAL* restrict RE,
__global const $REAL* restrict RF,
$REAL d
"""
),
}
y_args = {
"cuda": Template(
"""
__global__ void $FUNC(int xs,
int xf,
int ys,
int yf,
int zs,
int zf,
int NX_PHI1,
int NY_PHI1,
int NZ_PHI1,
int NX_PHI2,
int NY_PHI2,
int NZ_PHI2,
int NY_R,
const unsigned int* __restrict__ ID,
$REAL *Ex,
const $REAL* __restrict__ Ey,
$REAL *Ez,
const $REAL* __restrict__ Hx,
const $REAL* __restrict__ Hy,
const $REAL* __restrict__ Hz,
$REAL *PHI1,
$REAL *PHI2,
const $REAL* __restrict__ RA,
const $REAL* __restrict__ RB,
const $REAL* __restrict__ RE,
const $REAL* __restrict__ RF,
$REAL d)
"""
),
"opencl": Template(
"""
int xs,
int xf,
int ys,
int yf,
int zs,
int zf,
int NX_PHI1,
int NY_PHI1,
int NZ_PHI1,
int NX_PHI2,
int NY_PHI2,
int NZ_PHI2,
int NY_R,
__global const unsigned int* restrict ID,
__global $REAL *Ex,
__global const $REAL* restrict Ey,
__global $REAL *Ez,
__global const $REAL* restrict Hx,
__global const $REAL* restrict Hy,
__global const $REAL* restrict Hz,
__global $REAL *PHI1,
__global $REAL *PHI2,
__global const $REAL* restrict RA,
__global const $REAL* restrict RB,
__global const $REAL* restrict RE,
__global const $REAL* restrict RF,
$REAL d
"""
),
}
z_args = {
"cuda": Template(
"""
__global__ void $FUNC(int xs,
int xf,
int ys,
int yf,
int zs,
int zf,
int NX_PHI1,
int NY_PHI1,
int NZ_PHI1,
int NX_PHI2,
int NY_PHI2,
int NZ_PHI2,
int NY_R,
const unsigned int* __restrict__ ID,
$REAL *Ex,
$REAL *Ey,
const $REAL* __restrict__ Ez,
const $REAL* __restrict__ Hx,
const $REAL* __restrict__ Hy,
const $REAL* __restrict__ Hz,
$REAL *PHI1,
$REAL *PHI2,
const $REAL* __restrict__ RA,
const $REAL* __restrict__ RB,
const $REAL* __restrict__ RE,
const $REAL* __restrict__ RF,
$REAL d)
"""
),
"opencl": Template(
"""
int xs,
int xf,
int ys,
int yf,
int zs,
int zf,
int NX_PHI1,
int NY_PHI1,
int NZ_PHI1,
int NX_PHI2,
int NY_PHI2,
int NZ_PHI2,
int NY_R,
__global const unsigned int* restrict ID,
__global $REAL *Ex,
__global $REAL *Ey,
__global const $REAL* restrict Ez,
__global const $REAL* restrict Hx,
__global const $REAL* restrict Hy,
__global const $REAL* restrict Hz,
__global $REAL *PHI1,
__global $REAL *PHI2,
__global const $REAL* restrict RA,
__global const $REAL* restrict RB,
__global const $REAL* restrict RE,
__global const $REAL* restrict RF,
$REAL d
"""
),
}
order1_xminus = {
"args_cuda": x_args["cuda"],
"args_opencl": x_args["opencl"],
"func": Template(
"""
// This function updates the Ey and Ez field components for the xminus slab.
//
// Args:
// xs, xf, ys, yf, zs, zf: Cell coordinates of PML slab
// NX_PHI, NY_PHI, NZ_PHI, NY_R: Dimensions of PHI1, PHI2, and R PML arrays
// ID, E, H: Access to ID and field component arrays
// Phi, RA, RB, RE, RF: Access to PML electric coefficient arrays
// d: Spatial discretisation, e.g. dx, dy or dz
$CUDA_IDX
// Convert the linear index to subscripts for PML PHI1 (4D) arrays
int p1 = i / (NX_PHI1 * NY_PHI1 * NZ_PHI1);
int i1 = (i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) / (NY_PHI1 * NZ_PHI1);
int j1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) / NZ_PHI1;
int k1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) % NZ_PHI1;
// Convert the linear index to subscripts for PML PHI2 (4D) arrays
int p2 = i / (NX_PHI2 * NY_PHI2 * NZ_PHI2);
int i2 = (i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) / (NY_PHI2 * NZ_PHI2);
int j2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) / NZ_PHI2;
int k2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) % NZ_PHI2;
$REAL RA01, RB0, RE0, RF0, dHy, dHz;
$REAL dx = d;
int ii, jj, kk, materialEy, materialEz;
int nx = xf - xs;
int ny = yf - ys;
int nz = zf - zs;
if (p1 == 0 && i1 < nx && j1 < ny && k1 < nz) {
// Subscripts for field arrays
ii = xf - i1;
jj = j1 + ys;
kk = k1 + zs;
// PML coefficients
RA01 = RA[IDX2D_R(0,i1)] - 1;
RB0 = RB[IDX2D_R(0,i1)];
RE0 = RE[IDX2D_R(0,i1)];
RF0 = RF[IDX2D_R(0,i1)];
// Ey
materialEy = ID[IDX4D_ID(1,ii,jj,kk)];
dHz = (Hz[IDX3D_FIELDS(ii,jj,kk)] - Hz[IDX3D_FIELDS(ii-1,jj,kk)]) / dx;
Ey[IDX3D_FIELDS(ii,jj,kk)] = Ey[IDX3D_FIELDS(ii,jj,kk)] - updatecoeffsE[IDX2D_MAT(materialEy,4)] *
(RA01 * dHz + RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)]);
PHI1[IDX4D_PHI1(0,i1,j1,k1)] = RE0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] - RF0 * dHz;
}
if (p2 == 0 && i2 < nx && j2 < ny && k2 < nz) {
// Subscripts for field arrays
ii = xf - i2;
jj = j2 + ys;
kk = k2 + zs;
// PML coefficients
RA01 = RA[IDX2D_R(0,i2)] - 1;
RB0 = RB[IDX2D_R(0,i2)];
RE0 = RE[IDX2D_R(0,i2)];
RF0 = RF[IDX2D_R(0,i2)];
// Ez
materialEz = ID[IDX4D_ID(2,ii,jj,kk)];
dHy = (Hy[IDX3D_FIELDS(ii,jj,kk)] - Hy[IDX3D_FIELDS(ii-1,jj,kk)]) / dx;
Ez[IDX3D_FIELDS(ii,jj,kk)] = Ez[IDX3D_FIELDS(ii,jj,kk)] + updatecoeffsE[IDX2D_MAT(materialEz,4)] *
(RA01 * dHy + RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)]);
PHI2[IDX4D_PHI2(0,i2,j2,k2)] = RE0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] - RF0 * dHy;
}
"""
),
}
order2_xminus = {
"args_cuda": x_args["cuda"],
"args_opencl": x_args["opencl"],
"func": Template(
"""
// This function updates the Ey and Ez field components for the xminus slab.
//
// Args:
// xs, xf, ys, yf, zs, zf: Cell coordinates of PML slab
// NX_PHI, NY_PHI, NZ_PHI, NY_R: Dimensions of PHI1, PHI2, and R PML arrays
// ID, E, H: Access to ID and field component arrays
// Phi, RA, RB, RE, RF: Access to PML electric coefficient arrays
// d: Spatial discretisation, e.g. dx, dy or dz
$CUDA_IDX
// Convert the linear index to subscripts for PML PHI1 (4D) arrays
int p1 = i / (NX_PHI1 * NY_PHI1 * NZ_PHI1);
int i1 = (i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) / (NY_PHI1 * NZ_PHI1);
int j1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) / NZ_PHI1;
int k1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) % NZ_PHI1;
// Convert the linear index to subscripts for PML PHI2 (4D) arrays
int p2 = i / (NX_PHI2 * NY_PHI2 * NZ_PHI2);
int i2 = (i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) / (NY_PHI2 * NZ_PHI2);
int j2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) / NZ_PHI2;
int k2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) % NZ_PHI2;
$REAL RA0, RB0, RE0, RF0, RA1, RB1, RE1, RF1, RA01, dHy, dHz;
$REAL dx = d;
int ii, jj, kk, materialEy, materialEz;
int nx = xf - xs;
int ny = yf - ys;
int nz = zf - zs;
if (p1 == 0 && i1 < nx && j1 < ny && k1 < nz) {
// Subscripts for field arrays
ii = xf - i1;
jj = j1 + ys;
kk = k1 + zs;
// PML coefficients
RA0 = RA[IDX2D_R(0,i1)];
RB0 = RB[IDX2D_R(0,i1)];
RE0 = RE[IDX2D_R(0,i1)];
RF0 = RF[IDX2D_R(0,i1)];
RA1 = RA[IDX2D_R(1,i1)];
RB1 = RB[IDX2D_R(1,i1)];
RE1 = RE[IDX2D_R(1,i1)];
RF1 = RF[IDX2D_R(1,i1)];
RA01 = RA[IDX2D_R(0,i1)] * RA[IDX2D_R(1,i1)] - 1;
// Ey
materialEy = ID[IDX4D_ID(1,ii,jj,kk)];
dHz = (Hz[IDX3D_FIELDS(ii,jj,kk)] - Hz[IDX3D_FIELDS(ii-1,jj,kk)]) / dx;
Ey[IDX3D_FIELDS(ii,jj,kk)] = Ey[IDX3D_FIELDS(ii,jj,kk)] - updatecoeffsE[IDX2D_MAT(materialEy,4)] *
(RA01 * dHz + RA1 * RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] +
RB1 * PHI1[IDX4D_PHI1(1,i1,j1,k1)]);
PHI1[IDX4D_PHI1(1,i1,j1,k1)] = RE1 * PHI1[IDX4D_PHI1(1,i1,j1,k1)] - RF1 *
(RA0 * dHz + RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)]);
PHI1[IDX4D_PHI1(0,i1,j1,k1)] = RE0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] - RF0 * dHz;
}
if (p2 == 0 && i2 < nx && j2 < ny && k2 < nz) {
// Subscripts for field arrays
ii = xf - i2;
jj = j2 + ys;
kk = k2 + zs;
// PML coefficients
RA0 = RA[IDX2D_R(0,i2)];
RB0 = RB[IDX2D_R(0,i2)];
RE0 = RE[IDX2D_R(0,i2)];
RF0 = RF[IDX2D_R(0,i2)];
RA1 = RA[IDX2D_R(1,i2)];
RB1 = RB[IDX2D_R(1,i2)];
RE1 = RE[IDX2D_R(1,i2)];
RF1 = RF[IDX2D_R(1,i2)];
RA01 = RA[IDX2D_R(0,i2)] * RA[IDX2D_R(1,i2)] - 1;
// Ez
materialEz = ID[IDX4D_ID(2,ii,jj,kk)];
dHy = (Hy[IDX3D_FIELDS(ii,jj,kk)] - Hy[IDX3D_FIELDS(ii-1,jj,kk)]) / dx;
Ez[IDX3D_FIELDS(ii,jj,kk)] = Ez[IDX3D_FIELDS(ii,jj,kk)] + updatecoeffsE[IDX2D_MAT(materialEz,4)] *
(RA01 * dHy + RA1 * RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] +
RB1 * PHI2[IDX4D_PHI2(1,i2,j2,k2)]);
PHI2[IDX4D_PHI2(1,i2,j2,k2)] = RE1 * PHI2[IDX4D_PHI2(1,i2,j2,k2)] - RF1 *
(RA0 * dHy + RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)]);
PHI2[IDX4D_PHI2(0,i2,j2,k2)] = RE0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] - RF0 * dHy;
}
"""
),
}
order1_xplus = {
"args_cuda": x_args["cuda"],
"args_opencl": x_args["opencl"],
"func": Template(
"""
// This function updates the Ey and Ez field components for the xplus slab.
//
// Args:
// xs, xf, ys, yf, zs, zf: Cell coordinates of PML slab
// NX_PHI, NY_PHI, NZ_PHI, NY_R: Dimensions of PHI1, PHI2, and R PML arrays
// ID, E, H: Access to ID and field component arrays
// Phi, RA, RB, RE, RF: Access to PML electric coefficient arrays
// d: Spatial discretisation, e.g. dx, dy or dz
$CUDA_IDX
// Convert the linear index to subscripts for PML PHI1 (4D) arrays
int p1 = i / (NX_PHI1 * NY_PHI1 * NZ_PHI1);
int i1 = (i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) / (NY_PHI1 * NZ_PHI1);
int j1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) / NZ_PHI1;
int k1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) % NZ_PHI1;
// Convert the linear index to subscripts for PML PHI2 (4D) arrays
int p2 = i / (NX_PHI2 * NY_PHI2 * NZ_PHI2);
int i2 = (i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) / (NY_PHI2 * NZ_PHI2);
int j2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) / NZ_PHI2;
int k2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) % NZ_PHI2;
$REAL RA01, RB0, RE0, RF0, dHy, dHz;
$REAL dx = d;
int ii, jj, kk, materialEy, materialEz;
int nx = xf - xs;
int ny = yf - ys;
int nz = zf - zs;
if (p1 == 0 && i1 < nx && j1 < ny && k1 < nz) {
// Subscripts for field arrays
ii = i1 + xs;
jj = j1 + ys;
kk = k1 + zs;
// PML coefficients
RA01 = RA[IDX2D_R(0,i1)] - 1;
RB0 = RB[IDX2D_R(0,i1)];
RE0 = RE[IDX2D_R(0,i1)];
RF0 = RF[IDX2D_R(0,i1)];
// Ey
materialEy = ID[IDX4D_ID(1,ii,jj,kk)];
dHz = (Hz[IDX3D_FIELDS(ii,jj,kk)] - Hz[IDX3D_FIELDS(ii-1,jj,kk)]) / dx;
Ey[IDX3D_FIELDS(ii,jj,kk)] = Ey[IDX3D_FIELDS(ii,jj,kk)] - updatecoeffsE[IDX2D_MAT(materialEy,4)] *
(RA01 * dHz + RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)]);
PHI1[IDX4D_PHI1(0,i1,j1,k1)] = RE0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] - RF0 * dHz;
}
if (p2 == 0 && i2 < nx && j2 < ny && k2 < nz) {
// Subscripts for field arrays
ii = i2 + xs;
jj = j2 + ys;
kk = k2 + zs;
// PML coefficients
RA01 = RA[IDX2D_R(0,i2)] - 1;
RB0 = RB[IDX2D_R(0,i2)];
RE0 = RE[IDX2D_R(0,i2)];
RF0 = RF[IDX2D_R(0,i2)];
// Ez
materialEz = ID[IDX4D_ID(2,ii,jj,kk)];
dHy = (Hy[IDX3D_FIELDS(ii,jj,kk)] - Hy[IDX3D_FIELDS(ii-1,jj,kk)]) / dx;
Ez[IDX3D_FIELDS(ii,jj,kk)] = Ez[IDX3D_FIELDS(ii,jj,kk)] + updatecoeffsE[IDX2D_MAT(materialEz,4)] *
(RA01 * dHy + RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)]);
PHI2[IDX4D_PHI2(0,i2,j2,k2)] = RE0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] - RF0 * dHy;
}
"""
),
}
order2_xplus = {
"args_cuda": x_args["cuda"],
"args_opencl": x_args["opencl"],
"func": Template(
"""
// This function updates the Ey and Ez field components for the xplus slab.
//
// Args:
// xs, xf, ys, yf, zs, zf: Cell coordinates of PML slab
// NX_PHI, NY_PHI, NZ_PHI, NY_R: Dimensions of PHI1, PHI2, and R PML arrays
// ID, E, H: Access to ID and field component arrays
// Phi, RA, RB, RE, RF: Access to PML electric coefficient arrays
// d: Spatial discretisation, e.g. dx, dy or dz
$CUDA_IDX
// Convert the linear index to subscripts for PML PHI1 (4D) arrays
int p1 = i / (NX_PHI1 * NY_PHI1 * NZ_PHI1);
int i1 = (i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) / (NY_PHI1 * NZ_PHI1);
int j1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) / NZ_PHI1;
int k1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) % NZ_PHI1;
// Convert the linear index to subscripts for PML PHI2 (4D) arrays
int p2 = i / (NX_PHI2 * NY_PHI2 * NZ_PHI2);
int i2 = (i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) / (NY_PHI2 * NZ_PHI2);
int j2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) / NZ_PHI2;
int k2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) % NZ_PHI2;
$REAL RA0, RB0, RE0, RF0, RA1, RB1, RE1, RF1, RA01, dHy, dHz;
$REAL dx = d;
int ii, jj, kk, materialEy, materialEz;
int nx = xf - xs;
int ny = yf - ys;
int nz = zf - zs;
if (p1 == 0 && i1 < nx && j1 < ny && k1 < nz) {
// Subscripts for field arrays
ii = i1 + xs;
jj = j1 + ys;
kk = k1 + zs;
// PML coefficients
RA0 = RA[IDX2D_R(0,i1)];
RB0 = RB[IDX2D_R(0,i1)];
RE0 = RE[IDX2D_R(0,i1)];
RF0 = RF[IDX2D_R(0,i1)];
RA1 = RA[IDX2D_R(1,i1)];
RB1 = RB[IDX2D_R(1,i1)];
RE1 = RE[IDX2D_R(1,i1)];
RF1 = RF[IDX2D_R(1,i1)];
RA01 = RA[IDX2D_R(0,i1)] * RA[IDX2D_R(1,i1)] - 1;
// Ey
materialEy = ID[IDX4D_ID(1,ii,jj,kk)];
dHz = (Hz[IDX3D_FIELDS(ii,jj,kk)] - Hz[IDX3D_FIELDS(ii-1,jj,kk)]) / dx;
Ey[IDX3D_FIELDS(ii,jj,kk)] = Ey[IDX3D_FIELDS(ii,jj,kk)] - updatecoeffsE[IDX2D_MAT(materialEy,4)] *
(RA01 * dHz + RA1 * RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] + RB1 * PHI1[IDX4D_PHI1(1,i1,j1,k1)]);
PHI1[IDX4D_PHI1(1,i1,j1,k1)] = RE1 * PHI1[IDX4D_PHI1(1,i1,j1,k1)] - RF1 *
(RA0 * dHz + RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)]);
PHI1[IDX4D_PHI1(0,i1,j1,k1)] = RE0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] - RF0 * dHz;
}
if (p2 == 0 && i2 < nx && j2 < ny && k2 < nz) {
// Subscripts for field arrays
ii = i2 + xs;
jj = j2 + ys;
kk = k2 + zs;
// PML coefficients
RA0 = RA[IDX2D_R(0,i2)];
RB0 = RB[IDX2D_R(0,i2)];
RE0 = RE[IDX2D_R(0,i2)];
RF0 = RF[IDX2D_R(0,i2)];
RA1 = RA[IDX2D_R(1,i2)];
RB1 = RB[IDX2D_R(1,i2)];
RE1 = RE[IDX2D_R(1,i2)];
RF1 = RF[IDX2D_R(1,i2)];
RA01 = RA[IDX2D_R(0,i2)] * RA[IDX2D_R(1,i2)] - 1;
// Ez
materialEz = ID[IDX4D_ID(2,ii,jj,kk)];
dHy = (Hy[IDX3D_FIELDS(ii,jj,kk)] - Hy[IDX3D_FIELDS(ii-1,jj,kk)]) / dx;
Ez[IDX3D_FIELDS(ii,jj,kk)] = Ez[IDX3D_FIELDS(ii,jj,kk)] + updatecoeffsE[IDX2D_MAT(materialEz,4)] *
(RA01 * dHy + RA1 * RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] +
RB1 * PHI2[IDX4D_PHI2(1,i2,j2,k2)]);
PHI2[IDX4D_PHI2(1,i2,j2,k2)] = RE1 * PHI2[IDX4D_PHI2(1,i2,j2,k2)] - RF1 *
(RA0 * dHy + RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)]);
PHI2[IDX4D_PHI2(0,i2,j2,k2)] = RE0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] - RF0 * dHy;
}
"""
),
}
order1_yminus = {
"args_cuda": y_args["cuda"],
"args_opencl": y_args["opencl"],
"func": Template(
"""
// This function updates the Ex and Ez field components for the yminus slab.
//
// Args:
// xs, xf, ys, yf, zs, zf: Cell coordinates of PML slab
// NX_PHI, NY_PHI, NZ_PHI, NY_R: Dimensions of PHI1, PHI2, and R PML arrays
// ID, E, H: Access to ID and field component arrays
// Phi, RA, RB, RE, RF: Access to PML electric coefficient arrays
// d: Spatial discretisation, e.g. dx, dy or dz
$CUDA_IDX
// Convert the linear index to subscripts for PML PHI1 (4D) arrays
int p1 = i / (NX_PHI1 * NY_PHI1 * NZ_PHI1);
int i1 = (i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) / (NY_PHI1 * NZ_PHI1);
int j1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) / NZ_PHI1;
int k1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) % NZ_PHI1;
// Convert the linear index to subscripts for PML PHI2 (4D) arrays
int p2 = i / (NX_PHI2 * NY_PHI2 * NZ_PHI2);
int i2 = (i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) / (NY_PHI2 * NZ_PHI2);
int j2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) / NZ_PHI2;
int k2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) % NZ_PHI2;
$REAL RA01, RB0, RE0, RF0, dHx, dHz;
$REAL dy = d;
int ii, jj, kk, materialEx, materialEz;
int nx = xf - xs;
int ny = yf - ys;
int nz = zf - zs;
if (p1 == 0 && i1 < nx && j1 < ny && k1 < nz) {
// Subscripts for field arrays
ii = i1 + xs;
jj = yf - j1;
kk = k1 + zs;
// PML coefficients
RA01 = RA[IDX2D_R(0,j1)] - 1;
RB0 = RB[IDX2D_R(0,j1)];
RE0 = RE[IDX2D_R(0,j1)];
RF0 = RF[IDX2D_R(0,j1)];
// Ex
materialEx = ID[IDX4D_ID(0,ii,jj,kk)];
dHz = (Hz[IDX3D_FIELDS(ii,jj,kk)] - Hz[IDX3D_FIELDS(ii,jj-1,kk)]) / dy;
Ex[IDX3D_FIELDS(ii,jj,kk)] = Ex[IDX3D_FIELDS(ii,jj,kk)] + updatecoeffsE[IDX2D_MAT(materialEx,4)] *
(RA01 * dHz + RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)]);
PHI1[IDX4D_PHI1(0,i1,j1,k1)] = RE0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] - RF0 * dHz;
}
if (p2 == 0 && i2 < nx && j2 < ny && k2 < nz) {
// Subscripts for field arrays
ii = i2 + xs;
jj = yf - j2;
kk = k2 + zs;
// PML coefficients
RA01 = RA[IDX2D_R(0,j2)] - 1;
RB0 = RB[IDX2D_R(0,j2)];
RE0 = RE[IDX2D_R(0,j2)];
RF0 = RF[IDX2D_R(0,j2)];
// Ez
materialEz = ID[IDX4D_ID(2,ii,jj,kk)];
dHx = (Hx[IDX3D_FIELDS(ii,jj,kk)] - Hx[IDX3D_FIELDS(ii,jj-1,kk)]) / dy;
Ez[IDX3D_FIELDS(ii,jj,kk)] = Ez[IDX3D_FIELDS(ii,jj,kk)] - updatecoeffsE[IDX2D_MAT(materialEz,4)] *
(RA01 * dHx + RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)]);
PHI2[IDX4D_PHI2(0,i2,j2,k2)] = RE0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] - RF0 * dHx;
}
"""
),
}
order2_yminus = {
"args_cuda": y_args["cuda"],
"args_opencl": y_args["opencl"],
"func": Template(
"""
// This function updates the Ex and Ez field components for the yminus slab.
//
// Args:
// xs, xf, ys, yf, zs, zf: Cell coordinates of PML slab
// NX_PHI, NY_PHI, NZ_PHI, NY_R: Dimensions of PHI1, PHI2, and R PML arrays
// ID, E, H: Access to ID and field component arrays
// Phi, RA, RB, RE, RF: Access to PML electric coefficient arrays
// d: Spatial discretisation, e.g. dx, dy or dz
$CUDA_IDX
// Convert the linear index to subscripts for PML PHI1 (4D) arrays
int p1 = i / (NX_PHI1 * NY_PHI1 * NZ_PHI1);
int i1 = (i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) / (NY_PHI1 * NZ_PHI1);
int j1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) / NZ_PHI1;
int k1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) % NZ_PHI1;
// Convert the linear index to subscripts for PML PHI2 (4D) arrays
int p2 = i / (NX_PHI2 * NY_PHI2 * NZ_PHI2);
int i2 = (i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) / (NY_PHI2 * NZ_PHI2);
int j2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) / NZ_PHI2;
int k2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) % NZ_PHI2;
$REAL RA0, RB0, RE0, RF0, RA1, RB1, RE1, RF1, RA01, dHx, dHz;
$REAL dy = d;
int ii, jj, kk, materialEx, materialEz;
int nx = xf - xs;
int ny = yf - ys;
int nz = zf - zs;
if (p1 == 0 && i1 < nx && j1 < ny && k1 < nz) {
// Subscripts for field arrays
ii = i1 + xs;
jj = yf - j1;
kk = k1 + zs;
// PML coefficients
RA0 = RA[IDX2D_R(0,j1)];
RB0 = RB[IDX2D_R(0,j1)];
RE0 = RE[IDX2D_R(0,j1)];
RF0 = RF[IDX2D_R(0,j1)];
RA1 = RA[IDX2D_R(1,j1)];
RB1 = RB[IDX2D_R(1,j1)];
RE1 = RE[IDX2D_R(1,j1)];
RF1 = RF[IDX2D_R(1,j1)];
RA01 = RA[IDX2D_R(0,j1)] * RA[IDX2D_R(1,j1)] - 1;
// Ex
materialEx = ID[IDX4D_ID(0,ii,jj,kk)];
dHz = (Hz[IDX3D_FIELDS(ii,jj,kk)] - Hz[IDX3D_FIELDS(ii,jj-1,kk)]) / dy;
Ex[IDX3D_FIELDS(ii,jj,kk)] = Ex[IDX3D_FIELDS(ii,jj,kk)] + updatecoeffsE[IDX2D_MAT(materialEx,4)] *
(RA01 * dHz + RA1 * RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] +
RB1 * PHI1[IDX4D_PHI1(1,i1,j1,k1)]);
PHI1[IDX4D_PHI1(1,i1,j1,k1)] = RE1 * PHI1[IDX4D_PHI1(1,i1,j1,k1)] - RF1 *
(RA0 * dHz + RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)]);
PHI1[IDX4D_PHI1(0,i1,j1,k1)] = RE0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] - RF0 * dHz;
}
if (p2 == 0 && i2 < nx && j2 < ny && k2 < nz) {
// Subscripts for field arrays
ii = i2 + xs;
jj = yf - j2;
kk = k2 + zs;
// PML coefficients
RA0 = RA[IDX2D_R(0,j2)];
RB0 = RB[IDX2D_R(0,j2)];
RE0 = RE[IDX2D_R(0,j2)];
RF0 = RF[IDX2D_R(0,j2)];
RA1 = RA[IDX2D_R(1,j2)];
RB1 = RB[IDX2D_R(1,j2)];
RE1 = RE[IDX2D_R(1,j2)];
RF1 = RF[IDX2D_R(1,j2)];
RA01 = RA[IDX2D_R(0,j2)] * RA[IDX2D_R(1,j2)] - 1;
// Ez
materialEz = ID[IDX4D_ID(2,ii,jj,kk)];
dHx = (Hx[IDX3D_FIELDS(ii,jj,kk)] - Hx[IDX3D_FIELDS(ii,jj-1,kk)]) / dy;
Ez[IDX3D_FIELDS(ii,jj,kk)] = Ez[IDX3D_FIELDS(ii,jj,kk)] - updatecoeffsE[IDX2D_MAT(materialEz,4)] *
(RA01 * dHx + RA1 * RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] +
RB1 * PHI2[IDX4D_PHI2(1,i2,j2,k2)]);
PHI2[IDX4D_PHI2(1,i2,j2,k2)] = RE1 * PHI2[IDX4D_PHI2(1,i2,j2,k2)] - RF1 *
(RA0 * dHx + RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)]);
PHI2[IDX4D_PHI2(0,i2,j2,k2)] = RE0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] - RF0 * dHx;
}
"""
),
}
order1_yplus = {
"args_cuda": y_args["cuda"],
"args_opencl": y_args["opencl"],
"func": Template(
"""
// This function updates the Ex and Ez field components for the yplus slab.
//
// Args:
// xs, xf, ys, yf, zs, zf: Cell coordinates of PML slab
// NX_PHI, NY_PHI, NZ_PHI, NY_R: Dimensions of PHI1, PHI2, and R PML arrays
// ID, E, H: Access to ID and field component arrays
// Phi, RA, RB, RE, RF: Access to PML electric coefficient arrays
// d: Spatial discretisation, e.g. dx, dy or dz
$CUDA_IDX
// Convert the linear index to subscripts for PML PHI1 (4D) arrays
int p1 = i / (NX_PHI1 * NY_PHI1 * NZ_PHI1);
int i1 = (i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) / (NY_PHI1 * NZ_PHI1);
int j1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) / NZ_PHI1;
int k1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) % NZ_PHI1;
// Convert the linear index to subscripts for PML PHI2 (4D) arrays
int p2 = i / (NX_PHI2 * NY_PHI2 * NZ_PHI2);
int i2 = (i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) / (NY_PHI2 * NZ_PHI2);
int j2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) / NZ_PHI2;
int k2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) % NZ_PHI2;
$REAL RA01, RB0, RE0, RF0, dHx, dHz;
$REAL dy = d;
int ii, jj, kk, materialEx, materialEz;
int nx = xf - xs;
int ny = yf - ys;
int nz = zf - zs;
if (p1 == 0 && i1 < nx && j1 < ny && k1 < nz) {
// Subscripts for field arrays
ii = i1 + xs;
jj = j1 + ys;
kk = k1 + zs;
// PML coefficients
RA01 = RA[IDX2D_R(0,j1)] - 1;
RB0 = RB[IDX2D_R(0,j1)];
RE0 = RE[IDX2D_R(0,j1)];
RF0 = RF[IDX2D_R(0,j1)];
// Ex
materialEx = ID[IDX4D_ID(0,ii,jj,kk)];
dHz = (Hz[IDX3D_FIELDS(ii,jj,kk)] - Hz[IDX3D_FIELDS(ii,jj-1,kk)]) / dy;
Ex[IDX3D_FIELDS(ii,jj,kk)] = Ex[IDX3D_FIELDS(ii,jj,kk)] + updatecoeffsE[IDX2D_MAT(materialEx,4)] *
(RA01 * dHz + RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)]);
PHI1[IDX4D_PHI1(0,i1,j1,k1)] = RE0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] - RF0 * dHz;
}
if (p2 == 0 && i2 < nx && j2 < ny && k2 < nz) {
// Subscripts for field arrays
ii = i2 + xs;
jj = j2 + ys;
kk = k2 + zs;
// PML coefficients
RA01 = RA[IDX2D_R(0,j2)] - 1;
RB0 = RB[IDX2D_R(0,j2)];
RE0 = RE[IDX2D_R(0,j2)];
RF0 = RF[IDX2D_R(0,j2)];
// Ez
materialEz = ID[IDX4D_ID(2,ii,jj,kk)];
dHx = (Hx[IDX3D_FIELDS(ii,jj,kk)] - Hx[IDX3D_FIELDS(ii,jj-1,kk)]) / dy;
Ez[IDX3D_FIELDS(ii,jj,kk)] = Ez[IDX3D_FIELDS(ii,jj,kk)] - updatecoeffsE[IDX2D_MAT(materialEz,4)] *
(RA01 * dHx + RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)]);
PHI2[IDX4D_PHI2(0,i2,j2,k2)] = RE0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] - RF0 * dHx;
}
"""
),
}
order2_yplus = {
"args_cuda": y_args["cuda"],
"args_opencl": y_args["opencl"],
"func": Template(
"""
// This function updates the Ex and Ez field components for the yplus slab.
//
// Args:
// xs, xf, ys, yf, zs, zf: Cell coordinates of PML slab
// NX_PHI, NY_PHI, NZ_PHI, NY_R: Dimensions of PHI1, PHI2, and R PML arrays
// ID, E, H: Access to ID and field component arrays
// Phi, RA, RB, RE, RF: Access to PML electric coefficient arrays
// d: Spatial discretisation, e.g. dx, dy or dz
$CUDA_IDX
// Convert the linear index to subscripts for PML PHI1 (4D) arrays
int p1 = i / (NX_PHI1 * NY_PHI1 * NZ_PHI1);
int i1 = (i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) / (NY_PHI1 * NZ_PHI1);
int j1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) / NZ_PHI1;
int k1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) % NZ_PHI1;
// Convert the linear index to subscripts for PML PHI2 (4D) arrays
int p2 = i / (NX_PHI2 * NY_PHI2 * NZ_PHI2);
int i2 = (i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) / (NY_PHI2 * NZ_PHI2);
int j2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) / NZ_PHI2;
int k2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) % NZ_PHI2;
$REAL RA0, RB0, RE0, RF0, RA1, RB1, RE1, RF1, RA01, dHx, dHz;
$REAL dy = d;
int ii, jj, kk, materialEx, materialEz;
int nx = xf - xs;
int ny = yf - ys;
int nz = zf - zs;
if (p1 == 0 && i1 < nx && j1 < ny && k1 < nz) {
// Subscripts for field arrays
ii = i1 + xs;
jj = j1 + ys;
kk = k1 + zs;
// PML coefficients
RA0 = RA[IDX2D_R(0,j1)];
RB0 = RB[IDX2D_R(0,j1)];
RE0 = RE[IDX2D_R(0,j1)];
RF0 = RF[IDX2D_R(0,j1)];
RA1 = RA[IDX2D_R(1,j1)];
RB1 = RB[IDX2D_R(1,j1)];
RE1 = RE[IDX2D_R(1,j1)];
RF1 = RF[IDX2D_R(1,j1)];
RA01 = RA[IDX2D_R(0,j1)] * RA[IDX2D_R(1,j1)] - 1;
// Ex
materialEx = ID[IDX4D_ID(0,ii,jj,kk)];
dHz = (Hz[IDX3D_FIELDS(ii,jj,kk)] - Hz[IDX3D_FIELDS(ii,jj-1,kk)]) / dy;
Ex[IDX3D_FIELDS(ii,jj,kk)] = Ex[IDX3D_FIELDS(ii,jj,kk)] + updatecoeffsE[IDX2D_MAT(materialEx,4)] *
(RA01 * dHz + RA1 * RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] +
RB1 * PHI1[IDX4D_PHI1(1,i1,j1,k1)]);
PHI1[IDX4D_PHI1(1,i1,j1,k1)] = RE1 * PHI1[IDX4D_PHI1(1,i1,j1,k1)] - RF1 *
(RA0 * dHz + RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)]);
PHI1[IDX4D_PHI1(0,i1,j1,k1)] = RE0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] - RF0 * dHz;
}
if (p2 == 0 && i2 < nx && j2 < ny && k2 < nz) {
// Subscripts for field arrays
ii = i2 + xs;
jj = j2 + ys;
kk = k2 + zs;
// PML coefficients
RA0 = RA[IDX2D_R(0,j2)];
RB0 = RB[IDX2D_R(0,j2)];
RE0 = RE[IDX2D_R(0,j2)];
RF0 = RF[IDX2D_R(0,j2)];
RA1 = RA[IDX2D_R(1,j2)];
RB1 = RB[IDX2D_R(1,j2)];
RE1 = RE[IDX2D_R(1,j2)];
RF1 = RF[IDX2D_R(1,j2)];
RA01 = RA[IDX2D_R(0,j2)] * RA[IDX2D_R(1,j2)] - 1;
// Ez
materialEz = ID[IDX4D_ID(2,ii,jj,kk)];
dHx = (Hx[IDX3D_FIELDS(ii,jj,kk)] - Hx[IDX3D_FIELDS(ii,jj-1,kk)]) / dy;
Ez[IDX3D_FIELDS(ii,jj,kk)] = Ez[IDX3D_FIELDS(ii,jj,kk)] - updatecoeffsE[IDX2D_MAT(materialEz,4)] *
(RA01 * dHx + RA1 * RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] +
RB1 * PHI2[IDX4D_PHI2(1,i2,j2,k2)]);
PHI2[IDX4D_PHI2(1,i2,j2,k2)] = RE1 * PHI2[IDX4D_PHI2(1,i2,j2,k2)] - RF1 *
(RA0 * dHx + RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)]);
PHI2[IDX4D_PHI2(0,i2,j2,k2)] = RE0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] - RF0 * dHx;
}
"""
),
}
order1_zminus = {
"args_cuda": z_args["cuda"],
"args_opencl": z_args["opencl"],
"func": Template(
"""
// This function updates the Ex and Ey field components for the zminus slab.
//
// Args:
// xs, xf, ys, yf, zs, zf: Cell coordinates of PML slab
// NX_PHI, NY_PHI, NZ_PHI, NY_R: Dimensions of PHI1, PHI2, and R PML arrays
// ID, E, H: Access to ID and field component arrays
// Phi, RA, RB, RE, RF: Access to PML electric coefficient arrays
// d: Spatial discretisation, e.g. dx, dy or dz
$CUDA_IDX
// Convert the linear index to subscripts for PML PHI1 (4D) arrays
int p1 = i / (NX_PHI1 * NY_PHI1 * NZ_PHI1);
int i1 = (i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) / (NY_PHI1 * NZ_PHI1);
int j1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) / NZ_PHI1;
int k1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) % NZ_PHI1;
// Convert the linear index to subscripts for PML PHI2 (4D) arrays
int p2 = i / (NX_PHI2 * NY_PHI2 * NZ_PHI2);
int i2 = (i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) / (NY_PHI2 * NZ_PHI2);
int j2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) / NZ_PHI2;
int k2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) % NZ_PHI2;
$REAL RA01, RB0, RE0, RF0, dHx, dHy;
$REAL dz = d;
int ii, jj, kk, materialEx, materialEy;
int nx = xf - xs;
int ny = yf - ys;
int nz = zf - zs;
if (p1 == 0 && i1 < nx && j1 < ny && k1 < nz) {
// Subscripts for field arrays
ii = i1 + xs;
jj = j1 + ys;
kk = zf - k1;
// PML coefficients
RA01 = RA[IDX2D_R(0,k1)] - 1;
RB0 = RB[IDX2D_R(0,k1)];
RE0 = RE[IDX2D_R(0,k1)];
RF0 = RF[IDX2D_R(0,k1)];
// Ex
materialEx = ID[IDX4D_ID(0,ii,jj,kk)];
dHy = (Hy[IDX3D_FIELDS(ii,jj,kk)] - Hy[IDX3D_FIELDS(ii,jj,kk-1)]) / dz;
Ex[IDX3D_FIELDS(ii,jj,kk)] = Ex[IDX3D_FIELDS(ii,jj,kk)] - updatecoeffsE[IDX2D_MAT(materialEx,4)] *
(RA01 * dHy + RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)]);
PHI1[IDX4D_PHI1(0,i1,j1,k1)] = RE0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] - RF0 * dHy;
}
if (p2 == 0 && i2 < nx && j2 < ny && k2 < nz) {
// Subscripts for field arrays
ii = i2 + xs;
jj = j2 + ys;
kk = zf - k2;
// PML coefficients
RA01 = RA[IDX2D_R(0,k2)] - 1;
RB0 = RB[IDX2D_R(0,k2)];
RE0 = RE[IDX2D_R(0,k2)];
RF0 = RF[IDX2D_R(0,k2)];
// Ey
materialEy = ID[IDX4D_ID(1,ii,jj,kk)];
dHx = (Hx[IDX3D_FIELDS(ii,jj,kk)] - Hx[IDX3D_FIELDS(ii,jj,kk-1)]) / dz;
Ey[IDX3D_FIELDS(ii,jj,kk)] = Ey[IDX3D_FIELDS(ii,jj,kk)] + updatecoeffsE[IDX2D_MAT(materialEy,4)] *
(RA01 * dHx + RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)]);
PHI2[IDX4D_PHI2(0,i2,j2,k2)] = RE0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] - RF0 * dHx;
}
"""
),
}
order2_zminus = {
"args_cuda": z_args["cuda"],
"args_opencl": z_args["opencl"],
"func": Template(
"""
// This function updates the Ex and Ey field components for the zminus slab.
//
// Args:
// xs, xf, ys, yf, zs, zf: Cell coordinates of PML slab
// NX_PHI, NY_PHI, NZ_PHI, NY_R: Dimensions of PHI1, PHI2, and R PML arrays
// ID, E, H: Access to ID and field component arrays
// Phi, RA, RB, RE, RF: Access to PML electric coefficient arrays
// d: Spatial discretisation, e.g. dx, dy or dz
$CUDA_IDX
// Convert the linear index to subscripts for PML PHI1 (4D) arrays
int p1 = i / (NX_PHI1 * NY_PHI1 * NZ_PHI1);
int i1 = (i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) / (NY_PHI1 * NZ_PHI1);
int j1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) / NZ_PHI1;
int k1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) % NZ_PHI1;
// Convert the linear index to subscripts for PML PHI2 (4D) arrays
int p2 = i / (NX_PHI2 * NY_PHI2 * NZ_PHI2);
int i2 = (i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) / (NY_PHI2 * NZ_PHI2);
int j2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) / NZ_PHI2;
int k2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) % NZ_PHI2;
$REAL RA0, RB0, RE0, RF0, RA1, RB1, RE1, RF1, RA01, dHx, dHy;
$REAL dz = d;
int ii, jj, kk, materialEx, materialEy;
int nx = xf - xs;
int ny = yf - ys;
int nz = zf - zs;
if (p1 == 0 && i1 < nx && j1 < ny && k1 < nz) {
// Subscripts for field arrays
ii = i1 + xs;
jj = j1 + ys;
kk = zf - k1;
// PML coefficients
RA0 = RA[IDX2D_R(0,k1)];
RB0 = RB[IDX2D_R(0,k1)];
RE0 = RE[IDX2D_R(0,k1)];
RF0 = RF[IDX2D_R(0,k1)];
RA1 = RA[IDX2D_R(1,k1)];
RB1 = RB[IDX2D_R(1,k1)];
RE1 = RE[IDX2D_R(1,k1)];
RF1 = RF[IDX2D_R(1,k1)];
RA01 = RA[IDX2D_R(0,k1)] * RA[IDX2D_R(1,k1)] - 1;
// Ex
materialEx = ID[IDX4D_ID(0,ii,jj,kk)];
dHy = (Hy[IDX3D_FIELDS(ii,jj,kk)] - Hy[IDX3D_FIELDS(ii,jj,kk-1)]) / dz;
Ex[IDX3D_FIELDS(ii,jj,kk)] = Ex[IDX3D_FIELDS(ii,jj,kk)] - updatecoeffsE[IDX2D_MAT(materialEx,4)] *
(RA01 * dHy + RA1 * RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] +
RB1 * PHI1[IDX4D_PHI1(1,i1,j1,k1)]);
PHI1[IDX4D_PHI1(1,i1,j1,k1)] = RE1 * PHI1[IDX4D_PHI1(1,i1,j1,k1)] - RF1 *
(RA0 * dHy + RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)]);
PHI1[IDX4D_PHI1(0,i1,j1,k1)] = RE0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] - RF0 * dHy;
}
if (p2 == 0 && i2 < nx && j2 < ny && k2 < nz) {
// Subscripts for field arrays
ii = i2 + xs;
jj = j2 + ys;
kk = zf - k2;
// PML coefficients
RA0 = RA[IDX2D_R(0,k2)];
RB0 = RB[IDX2D_R(0,k2)];
RE0 = RE[IDX2D_R(0,k2)];
RF0 = RF[IDX2D_R(0,k2)];
RA1 = RA[IDX2D_R(1,k2)];
RB1 = RB[IDX2D_R(1,k2)];
RE1 = RE[IDX2D_R(1,k2)];
RF1 = RF[IDX2D_R(1,k2)];
RA01 = RA[IDX2D_R(0,k2)] * RA[IDX2D_R(1,k2)] - 1;
// Ey
materialEy = ID[IDX4D_ID(1,ii,jj,kk)];
dHx = (Hx[IDX3D_FIELDS(ii,jj,kk)] - Hx[IDX3D_FIELDS(ii,jj,kk-1)]) / dz;
Ey[IDX3D_FIELDS(ii,jj,kk)] = Ey[IDX3D_FIELDS(ii,jj,kk)] + updatecoeffsE[IDX2D_MAT(materialEy,4)] *
(RA01 * dHx + RA1 * RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] +
RB1 * PHI2[IDX4D_PHI2(1,i2,j2,k2)]);
PHI2[IDX4D_PHI2(1,i2,j2,k2)] = RE1 * PHI2[IDX4D_PHI2(1,i2,j2,k2)] - RF1 *
(RA0 * dHx + RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)]);
PHI2[IDX4D_PHI2(0,i2,j2,k2)] = RE0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] - RF0 * dHx;
}
"""
),
}
order1_zplus = {
"args_cuda": z_args["cuda"],
"args_opencl": z_args["opencl"],
"func": Template(
"""
// This function updates the Ex and Ey field components for the zplus slab.
//
// Args:
// xs, xf, ys, yf, zs, zf: Cell coordinates of PML slab
// NX_PHI, NY_PHI, NZ_PHI, NY_R: Dimensions of PHI1, PHI2, and R PML arrays
// ID, E, H: Access to ID and field component arrays
// Phi, RA, RB, RE, RF: Access to PML electric coefficient arrays
// d: Spatial discretisation, e.g. dx, dy or dz
$CUDA_IDX
// Convert the linear index to subscripts for PML PHI1 (4D) arrays
int p1 = i / (NX_PHI1 * NY_PHI1 * NZ_PHI1);
int i1 = (i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) / (NY_PHI1 * NZ_PHI1);
int j1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) / NZ_PHI1;
int k1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) % NZ_PHI1;
// Convert the linear index to subscripts for PML PHI2 (4D) arrays
int p2 = i / (NX_PHI2 * NY_PHI2 * NZ_PHI2);
int i2 = (i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) / (NY_PHI2 * NZ_PHI2);
int j2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) / NZ_PHI2;
int k2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) % NZ_PHI2;
$REAL RA01, RB0, RE0, RF0, dHx, dHy;
$REAL dz = d;
int ii, jj, kk, materialEx, materialEy;
int nx = xf - xs;
int ny = yf - ys;
int nz = zf - zs;
if (p1 == 0 && i1 < nx && j1 < ny && k1 < nz) {
// Subscripts for field arrays
ii = i1 + xs;
jj = j1 + ys;
kk = k1 + zs;
// PML coefficients
RA01 = RA[IDX2D_R(0,k1)] - 1;
RB0 = RB[IDX2D_R(0,k1)];
RE0 = RE[IDX2D_R(0,k1)];
RF0 = RF[IDX2D_R(0,k1)];
// Ex
materialEx = ID[IDX4D_ID(0,ii,jj,kk)];
dHy = (Hy[IDX3D_FIELDS(ii,jj,kk)] - Hy[IDX3D_FIELDS(ii,jj,kk-1)]) / dz;
Ex[IDX3D_FIELDS(ii,jj,kk)] = Ex[IDX3D_FIELDS(ii,jj,kk)] - updatecoeffsE[IDX2D_MAT(materialEx,4)] *
(RA01 * dHy + RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)]);
PHI1[IDX4D_PHI1(0,i1,j1,k1)] = RE0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] - RF0 * dHy;
}
if (p2 == 0 && i2 < nx && j2 < ny && k2 < nz) {
// Subscripts for field arrays
ii = i2 + xs;
jj = j2 + ys;
kk = k2 + zs;
// PML coefficients
RA01 = RA[IDX2D_R(0,k2)] - 1;
RB0 = RB[IDX2D_R(0,k2)];
RE0 = RE[IDX2D_R(0,k2)];
RF0 = RF[IDX2D_R(0,k2)];
// Ey
materialEy = ID[IDX4D_ID(1,ii,jj,kk)];
dHx = (Hx[IDX3D_FIELDS(ii,jj,kk)] - Hx[IDX3D_FIELDS(ii,jj,kk-1)]) / dz;
Ey[IDX3D_FIELDS(ii,jj,kk)] = Ey[IDX3D_FIELDS(ii,jj,kk)] + updatecoeffsE[IDX2D_MAT(materialEy,4)] *
(RA01 * dHx + RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)]);
PHI2[IDX4D_PHI2(0,i2,j2,k2)] = RE0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] - RF0 * dHx;
}
"""
),
}
order2_zplus = {
"args_cuda": z_args["cuda"],
"args_opencl": z_args["opencl"],
"func": Template(
"""
// This function updates the Ex and Ey field components for the zplus slab.
//
// Args:
// xs, xf, ys, yf, zs, zf: Cell coordinates of PML slab
// NX_PHI, NY_PHI, NZ_PHI, NY_R: Dimensions of PHI1, PHI2, and R PML arrays
// ID, E, H: Access to ID and field component arrays
// Phi, RA, RB, RE, RF: Access to PML electric coefficient arrays
// d: Spatial discretisation, e.g. dx, dy or dz
$CUDA_IDX
// Convert the linear index to subscripts for PML PHI1 (4D) arrays
int p1 = i / (NX_PHI1 * NY_PHI1 * NZ_PHI1);
int i1 = (i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) / (NY_PHI1 * NZ_PHI1);
int j1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) / NZ_PHI1;
int k1 = ((i % (NX_PHI1 * NY_PHI1 * NZ_PHI1)) % (NY_PHI1 * NZ_PHI1)) % NZ_PHI1;
// Convert the linear index to subscripts for PML PHI2 (4D) arrays
int p2 = i / (NX_PHI2 * NY_PHI2 * NZ_PHI2);
int i2 = (i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) / (NY_PHI2 * NZ_PHI2);
int j2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) / NZ_PHI2;
int k2 = ((i % (NX_PHI2 * NY_PHI2 * NZ_PHI2)) % (NY_PHI2 * NZ_PHI2)) % NZ_PHI2;
$REAL RA0, RB0, RE0, RF0, RA1, RB1, RE1, RF1, RA01, dHx, dHy;
$REAL dz = d;
int ii, jj, kk, materialEx, materialEy;
int nx = xf - xs;
int ny = yf - ys;
int nz = zf - zs;
if (p1 == 0 && i1 < nx && j1 < ny && k1 < nz) {
// Subscripts for field arrays
ii = i1 + xs;
jj = j1 + ys;
kk = k1 + zs;
// PML coefficients
RA0 = RA[IDX2D_R(0,k1)];
RB0 = RB[IDX2D_R(0,k1)];
RE0 = RE[IDX2D_R(0,k1)];
RF0 = RF[IDX2D_R(0,k1)];
RA1 = RA[IDX2D_R(1,k1)];
RB1 = RB[IDX2D_R(1,k1)];
RE1 = RE[IDX2D_R(1,k1)];
RF1 = RF[IDX2D_R(1,k1)];
RA01 = RA[IDX2D_R(0,k1)] * RA[IDX2D_R(1,k1)] - 1;
// Ex
materialEx = ID[IDX4D_ID(0,ii,jj,kk)];
dHy = (Hy[IDX3D_FIELDS(ii,jj,kk)] - Hy[IDX3D_FIELDS(ii,jj,kk-1)]) / dz;
Ex[IDX3D_FIELDS(ii,jj,kk)] = Ex[IDX3D_FIELDS(ii,jj,kk)] - updatecoeffsE[IDX2D_MAT(materialEx,4)] *
(RA01 * dHy + RA1 * RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] +
RB1 * PHI1[IDX4D_PHI1(1,i1,j1,k1)]);
PHI1[IDX4D_PHI1(1,i1,j1,k1)] = RE1 * PHI1[IDX4D_PHI1(1,i1,j1,k1)] - RF1 *
(RA0 * dHy + RB0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)]);
PHI1[IDX4D_PHI1(0,i1,j1,k1)] = RE0 * PHI1[IDX4D_PHI1(0,i1,j1,k1)] - RF0 * dHy;
}
if (p2 == 0 && i2 < nx && j2 < ny && k2 < nz) {
// Subscripts for field arrays
ii = i2 + xs;
jj = j2 + ys;
kk = k2 + zs;
// PML coefficients
RA0 = RA[IDX2D_R(0,k2)];
RB0 = RB[IDX2D_R(0,k2)];
RE0 = RE[IDX2D_R(0,k2)];
RF0 = RF[IDX2D_R(0,k2)];
RA1 = RA[IDX2D_R(1,k2)];
RB1 = RB[IDX2D_R(1,k2)];
RE1 = RE[IDX2D_R(1,k2)];
RF1 = RF[IDX2D_R(1,k2)];
RA01 = RA[IDX2D_R(0,k2)] * RA[IDX2D_R(1,k2)] - 1;
// Ey
materialEy = ID[IDX4D_ID(1,ii,jj,kk)];
dHx = (Hx[IDX3D_FIELDS(ii,jj,kk)] - Hx[IDX3D_FIELDS(ii,jj,kk-1)]) / dz;
Ey[IDX3D_FIELDS(ii,jj,kk)] = Ey[IDX3D_FIELDS(ii,jj,kk)] + updatecoeffsE[IDX2D_MAT(materialEy,4)] *
(RA01 * dHx + RA1 * RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] +
RB1 * PHI2[IDX4D_PHI2(1,i2,j2,k2)]);
PHI2[IDX4D_PHI2(1,i2,j2,k2)] = RE1 * PHI2[IDX4D_PHI2(1,i2,j2,k2)] - RF1 *
(RA0 * dHx + RB0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)]);
PHI2[IDX4D_PHI2(0,i2,j2,k2)] = RE0 * PHI2[IDX4D_PHI2(0,i2,j2,k2)] - RF0 * dHx;
}
"""
),
}