文件
gprMax/gprMax/cmds_geometry/fractal_box.py

149 行
6.7 KiB
Python

# Copyright (C) 2015-2020: The University of Edinburgh
# Authors: Craig Warren and Antonis Giannopoulos
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import logging
import numpy as np
from ..fractals import FractalVolume
from .cmds_geometry import UserObjectGeometry, rotate_2point_object
logger = logging.getLogger(__name__)
class FractalBox(UserObjectGeometry):
"""Allows you to introduce an orthogonal parallelepiped with fractal distributed properties which are related to a mixing model or normal material into the model.
:param p1: The lower left (x,y,z) coordinates of the parallelepiped
:type p1: list, non-optional
:param p2: The upper right (x,y,z) coordinates of the parallelepiped
:type p2: list, non-optional
:param frac_dim: The fractal dimension which, for an orthogonal parallelepiped, should take values between zero and three.
:type frac_dim: float, non-optional
:param weighting: Weightings in the x, y, z direction of the surface.
:type weighting: list, non-optional
:param n_materials: Number of materials to use for the fractal distribution (defined according to the associated mixing model). This should be set to one if using a normal material instead of a mixing model.
:type n_materials: list, non-optional
:param mixing_model_id: Is an identifier for the associated mixing model or material.
:type mixing_model_id: list, non-optional
:param id: Identifier for the fractal box itself.
:type id: list, non-optional
:param seed: Controls the seeding of the random number generator used to create the fractals..
:type seed: float, non-optional
:param averaging: y or n, used to switch on and off dielectric smoothing.
:type averaging: str, non-optional
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.hash = '#fractal_box'
def rotate(self, axis, angle, origin=None):
"""Set parameters for rotation."""
self.axis = axis
self.angle = angle
self.origin = origin
self.dorotate = True
def __dorotate(self):
"""Perform rotation."""
pts = np.array([self.kwargs['p1'], self.kwargs['p2']])
rot_pts = rotate_2point_object(pts, self.axis, self.angle, self.origin)
self.kwargs['p1'] = tuple(rot_pts[0, :])
self.kwargs['p2'] = tuple(rot_pts[1, :])
def create(self, grid, uip):
try:
p1 = self.kwargs['p1']
p2 = self.kwargs['p2']
frac_dim = self.kwargs['frac_dim']
weighting = np.array(self.kwargs['weighting'])
n_materials = self.kwargs['n_materials']
mixing_model_id = self.kwargs['mixing_model_id']
ID = self.kwargs['id']
except KeyError:
logger.exception(self.__str__() + ' Incorrect parameters')
raise
try:
seed = self.kwargs['seed']
except KeyError:
seed = None
if self.dorotate:
self.__dorotate()
# Default is no dielectric smoothing for a fractal box
averagefractalbox = False
# check averaging
try:
# go with user specified averaging
averagefractalbox = self.kwargs['averaging']
except KeyError:
# if they havent specfied - go with the grid default
averagefractalbox = False
p1, p2 = uip.check_box_points(p1, p2, self.__str__())
xs, ys, zs = p1
xf, yf, zf = p2
if frac_dim < 0:
logger.exception(self.__str__() + ' requires a positive value for the fractal dimension')
raise ValueError
if weighting[0] < 0:
logger.exception(self.__str__() + ' requires a positive value for the fractal weighting in the x direction')
raise ValueError
if weighting[1] < 0:
logger.exception(self.__str__() + ' requires a positive value for the fractal weighting in the y direction')
raise ValueError
if weighting[2] < 0:
logger.exception(self.__str__() + ' requires a positive value for the fractal weighting in the z direction')
if n_materials < 0:
logger.exception(self.__str__() + ' requires a positive value for the number of bins')
raise ValueError
# Find materials to use to build fractal volume, either from mixing models or normal materials
mixingmodel = next((x for x in grid.mixingmodels if x.ID == mixing_model_id), None)
material = next((x for x in grid.materials if x.ID == mixing_model_id), None)
nbins = n_materials
if mixingmodel:
if nbins == 1:
logger.exception(self.__str__() + ' must be used with more than one material from the mixing model.')
raise ValueError
# Create materials from mixing model as number of bins now known from fractal_box command
mixingmodel.calculate_debye_properties(nbins, grid)
elif not material:
logger.exception(self.__str__() + f' mixing model or material with ID {mixing_model_id} does not exist')
raise ValueError
volume = FractalVolume(xs, xf, ys, yf, zs, zf, frac_dim)
volume.ID = ID
volume.operatingonID = mixing_model_id
volume.nbins = nbins
volume.seed = seed
volume.weighting = weighting
volume.averaging = averagefractalbox
volume.mixingmodel = mixingmodel
dielectricsmoothing = 'on' if volume.averaging else 'off'
logger.info(self.grid_name(grid) + f'Fractal box {volume.ID} from {xs * grid.dx:g}m, {ys * grid.dy:g}m, {zs * grid.dz:g}m, to {xf * grid.dx:g}m, {yf * grid.dy:g}m, {zf * grid.dz:g}m with {volume.operatingonID}, fractal dimension {volume.dimension:g}, fractal weightings {volume.weighting[0]:g}, {volume.weighting[1]:g}, {volume.weighting[2]:g}, fractal seeding {volume.seed}, with {volume.nbins} material(s) created, dielectric smoothing is {dielectricsmoothing}.')
grid.fractalvolumes.append(volume)