文件
gprMax/gprMax/grid.py
2017-01-26 16:55:58 +00:00

332 行
12 KiB
Python

# Copyright (C) 2015-2017: The University of Edinburgh
# Authors: Craig Warren and Antonis Giannopoulos
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
from collections import OrderedDict
from colorama import init, Fore, Style
init()
import numpy as np
np.seterr(invalid='raise')
from gprMax.constants import c, floattype, complextype
from gprMax.materials import Material
from gprMax.pml import PML
from gprMax.utilities import round_value
class Grid(object):
"""Generic grid/mesh."""
def __init__(self, grid):
self.nx = grid.shape[0]
self.ny = grid.shape[1]
self.nz = grid.shape[2]
self.dx = 1
self.dy = 1
self.dz = 1
self.i_max = self.nx - 1
self.j_max = self.ny - 1
self.k_max = self.nz - 1
self.grid = grid
def n_edges(self):
l = self.nx
m = self.ny
n = self.nz
e = (l * m * (n - 1)) + (m * n * (l - 1)) + (l * n * (m - 1))
return e
def n_nodes(self):
return self.nx * self.ny * self.nz
def n_cells(self):
return (self.nx - 1) * (self.ny - 1) * (self.nz - 1)
def get(self, i, j, k):
return self.grid[i, j, k]
def within_bounds(self, **kwargs):
for co, val in kwargs.items():
if val < 0 or val > getattr(self, 'n' + co):
raise ValueError(co)
def calculate_coord(self, coord, val):
co = round_value(float(val) / getattr(self, 'd' + coord))
return co
class FDTDGrid(Grid):
"""Holds attributes associated with the entire grid. A convenient way for accessing regularly used parameters."""
def __init__(self):
self.inputfilename = ''
self.inputdirectory = ''
self.title = ''
self.messages = True
self.tqdmdisable = False
# Threshold (dB) down from maximum power (0dB) of main frequency used to calculate highest frequency for disperion analysis
self.highestfreqthres = 60
# Maximum allowable percentage physical phase-velocity phase error
self.maxnumericaldisp = 2
# Minimum grid sampling of smallest wavelength for physical wave propagation
self.mingridsampling = 3
self.nx = 0
self.ny = 0
self.nz = 0
self.dx = 0
self.dy = 0
self.dz = 0
self.dt = 0
self.dimension = None
self.iterations = 0
self.timewindow = 0
self.nthreads = 0
self.cfs = []
self.pmlthickness = OrderedDict((key, 10) for key in PML.slabs)
self.pmls = []
self.materials = []
self.mixingmodels = []
self.averagevolumeobjects = True
self.fractalvolumes = []
self.geometryviews = []
self.geometryobjectswrite = []
self.waveforms = []
self.voltagesources = []
self.hertziandipoles = []
self.magneticdipoles = []
self.transmissionlines = []
self.rxs = []
self.srcsteps = [0, 0, 0]
self.rxsteps = [0, 0, 0]
self.snapshots = []
def initialise_geometry_arrays(self):
"""Initialise an array for volumetric material IDs (solid); boolean arrays for specifying whether materials can have dielectric smoothing (rigid);
and an array for cell edge IDs (ID). Solid and ID arrays are initialised to free_space (one); rigid arrays to allow dielectric smoothing (zero).
"""
self.solid = np.ones((self.nx + 1, self.ny + 1, self.nz + 1), dtype=np.uint32)
self.rigidE = np.zeros((12, self.nx + 1, self.ny + 1, self.nz + 1), dtype=np.int8)
self.rigidH = np.zeros((6, self.nx + 1, self.ny + 1, self.nz + 1), dtype=np.int8)
self.IDlookup = {'Ex': 0, 'Ey': 1, 'Ez': 2, 'Hx': 3, 'Hy': 4, 'Hz': 5}
self.ID = np.ones((6, self.nx + 1, self.ny + 1, self.nz + 1), dtype=np.uint32)
def initialise_field_arrays(self):
"""Initialise arrays for the electric and magnetic field components."""
self.Ex = np.zeros((self.nx, self.ny + 1, self.nz + 1), dtype=floattype)
self.Ey = np.zeros((self.nx + 1, self.ny, self.nz + 1), dtype=floattype)
self.Ez = np.zeros((self.nx + 1, self.ny + 1, self.nz), dtype=floattype)
self.Hx = np.zeros((self.nx + 1, self.ny, self.nz), dtype=floattype)
self.Hy = np.zeros((self.nx, self.ny + 1, self.nz), dtype=floattype)
self.Hz = np.zeros((self.nx, self.ny, self.nz + 1), dtype=floattype)
def initialise_std_update_coeff_arrays(self):
"""Initialise arrays for storing update coefficients."""
self.updatecoeffsE = np.zeros((len(self.materials), 5), dtype=floattype)
self.updatecoeffsH = np.zeros((len(self.materials), 5), dtype=floattype)
def initialise_dispersive_arrays(self):
"""Initialise arrays for storing coefficients when there are dispersive materials present."""
self.Tx = np.zeros((Material.maxpoles, self.nx, self.ny + 1, self.nz + 1), dtype=complextype)
self.Ty = np.zeros((Material.maxpoles, self.nx + 1, self.ny, self.nz + 1), dtype=complextype)
self.Tz = np.zeros((Material.maxpoles, self.nx + 1, self.ny + 1, self.nz), dtype=complextype)
self.updatecoeffsdispersive = np.zeros((len(self.materials), 3 * Material.maxpoles), dtype=complextype)
def dispersion_analysis(G):
"""Analysis of numerical dispersion (Taflove et al, 2005, p112) - worse case of maximum frequency and minimum wavelength
Args:
G (class): Grid class instance - holds essential parameters describing the model.
Returns:
results (dict): Results from dispersion analysis
"""
# Physical phase velocity error (percentage); grid sampling density; material with maximum permittivity; maximum frequency of interest
results = {'deltavp': False, 'N': False, 'material': False, 'maxfreq': False}
# Find maximum frequency
maxfreqs = []
for waveform in G.waveforms:
if waveform.type == 'sine' or waveform.type == 'contsine':
maxfreqs.append(4 * waveform.freq)
elif waveform.type == 'impulse':
pass
else:
# User-defined waveform
if waveform.type == 'user':
waveformvalues = waveform.uservalues
# Built-in waveform
else:
time = np.linspace(0, 1, G.iterations)
time *= (G.iterations * G.dt)
waveformvalues = np.zeros(len(time))
timeiter = np.nditer(time, flags=['c_index'])
while not timeiter.finished:
waveformvalues[timeiter.index] = waveform.calculate_value(timeiter[0], G.dt)
timeiter.iternext()
# Ensure source waveform is not being overly truncated before attempting any FFT
if np.abs(waveformvalues[-1]) < np.abs(np.amax(waveformvalues)) / 100:
# Calculate magnitude of frequency spectra of waveform
power = 10 * np.log10(np.abs(np.fft.fft(waveformvalues))**2)
freqs = np.fft.fftfreq(power.size, d=G.dt)
# Shift powers so that frequency with maximum power is at zero decibels
power -= np.amax(power)
# Get frequency for max power
freqmaxpower = np.where(power[1::] == np.amax(power[1::]))[0][0]
print(freqmaxpower)
print(freqs[freqmaxpower])
# Set maximum frequency to a threshold drop from maximum power, ignoring DC value
freq = np.where((np.amax(power[freqmaxpower::]) - power[freqmaxpower::]) > G.highestfreqthres)[0][0] + 1
maxfreqs.append(freqs[freq])
else:
print(Fore.RED + "\nWARNING: Duration of source waveform '{}' means it does not fit within specified time window and is therefore being truncated.".format(waveform.ID) + Style.RESET_ALL)
if maxfreqs:
results['maxfreq'] = max(maxfreqs)
# Find minimum wavelength (material with maximum permittivity)
maxer = 0
matmaxer = ''
for x in G.materials:
if x.se != float('inf'):
er = x.er
if x.deltaer:
er += max(x.deltaer)
if er > maxer:
maxer = er
matmaxer = x.ID
results['material'] = next(x for x in G.materials if x.ID == matmaxer)
# Minimum velocity
minvelocity = c / np.sqrt(maxer)
# Minimum wavelength
minwavelength = minvelocity / results['maxfreq']
# Maximum spatial step
if G.dimension == '3D':
delta = max(G.dx, G.dy, G.dz)
elif G.dimension == '2D':
if G.nx == 1:
delta = max(G.dy, G.dz)
elif G.ny == 1:
delta = max(G.dx, G.dz)
elif G.nz == 1:
delta = max(G.dx, G.dy)
# Courant stability factor
S = (c * G.dt) / delta
# Grid sampling density
results['N'] = minwavelength / delta
# Check grid sampling will result in physical wave propagation
if int(np.floor(results['N'])) >= G.mingridsampling:
# Numerical phase velocity
vp = np.pi / (results['N'] * np.arcsin((1 / S) * np.sin((np.pi * S) / results['N'])))
# Physical phase velocity error (percentage)
results['deltavp'] = (((vp * c) - c) / c) * 100
# Store rounded down value of grid sampling density
results['N'] = int(np.floor(results['N']))
return results
def get_other_directions(direction):
"""Return the two other directions from x, y, z given a single direction
Args:
direction (str): Component x, y or z
Returns:
(tuple): Two directions from x, y, z
"""
directions = {'x': ('y', 'z'), 'y': ('x', 'z'), 'z': ('x', 'y')}
return directions[direction]
def Ix(x, y, z, Hy, Hz, G):
"""Calculates the x-component of current at a grid position.
Args:
x, y, z (float): Coordinates of position in grid.
Hy, Hz (memory view): numpy array of magnetic field values.
G (class): Grid class instance - holds essential parameters describing the model.
"""
if y == 0 or z == 0:
Ix = 0
else:
Ix = G.dy * (Hy[x, y, z - 1] - Hy[x, y, z]) + G.dz * (Hz[x, y, z] - Hz[x, y - 1, z])
return Ix
def Iy(x, y, z, Hx, Hz, G):
"""Calculates the y-component of current at a grid position.
Args:
x, y, z (float): Coordinates of position in grid.
Hx, Hz (memory view): numpy array of magnetic field values.
G (class): Grid class instance - holds essential parameters describing the model.
"""
if x == 0 or z == 0:
Iy = 0
else:
Iy = G.dx * (Hx[x, y, z] - Hx[x, y, z - 1]) + G.dz * (Hz[x - 1, y, z] - Hz[x, y, z])
return Iy
def Iz(x, y, z, Hx, Hy, G):
"""Calculates the z-component of current at a grid position.
Args:
x, y, z (float): Coordinates of position in grid.
Hx, Hy (memory view): numpy array of magnetic field values.
G (class): Grid class instance - holds essential parameters describing the model.
"""
if x == 0 or y == 0:
Iz = 0
else:
Iz = G.dx * (Hx[x, y - 1, z] - Hx[x, y, z]) + G.dy * (Hy[x, y, z] - Hy[x - 1, y, z])
return Iz