你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-08 07:24:19 +08:00
160 行
5.7 KiB
Python
160 行
5.7 KiB
Python
from pathlib import Path
|
||
|
||
import gprMax
|
||
import h5py
|
||
import matplotlib.pyplot as plt
|
||
import numpy as np
|
||
from scipy.constants import c
|
||
from scipy.io import loadmat
|
||
|
||
|
||
# Title and file path for FDTD model output
|
||
modeltitle = 'rtm_model'
|
||
fn = Path(__file__)
|
||
fn = Path(fn.parent, modeltitle)
|
||
|
||
# Load B-scan data to be migrated
|
||
matfile = Path(str(Path(__file__).parent.resolve()), 'bgr_6.mat')
|
||
matcontents = loadmat(str(matfile))
|
||
data = matcontents['data']
|
||
data = np.transpose(data) # Transpose to rows: samples, cols: traces
|
||
|
||
# Specify trace interval, sampling interval, & create time vector for B-scan data
|
||
trac_int = 0.005 # metres
|
||
samp_int = 1.7578e-11 # seconds
|
||
maxtime = samp_int * data.shape[0]
|
||
time = np.linspace(0, maxtime, data.shape[0])
|
||
|
||
# Specify velocity/permittivity of B-scan data
|
||
v = 0.12e9
|
||
|
||
# Depth used for calculating FDTD z-dimension
|
||
depth = v * maxtime / 2
|
||
|
||
# FDTD discretisation, 2D domain dims, and time window
|
||
dl = 0.005 # metres
|
||
pml_cells = 10
|
||
extra_cells = 10 # Allow some extra cells after PML before placing sources
|
||
x_cells = data.shape[1] + 2 * pml_cells + 2 * extra_cells
|
||
x = x_cells * trac_int
|
||
y_cells = 1
|
||
y = y_cells * dl
|
||
z_cells = int(np.ceil(depth / dl) + 2 * pml_cells + 2 * extra_cells)
|
||
z = z_cells * dl
|
||
|
||
# Holds permittivity field to import into FDTD model
|
||
er = np.ones((x_cells, y_cells, z_cells - (pml_cells + extra_cells)))
|
||
er_value = np.around(4 * (c / v)**2, decimals=2) # 4xEr as velocity doubled
|
||
er = er * er_value
|
||
mat_ers = np.unique(er)
|
||
|
||
# Write materials text file
|
||
with open(fn.with_suffix('.txt'), 'w') as fmaterials:
|
||
for i, mat_er in enumerate(mat_ers):
|
||
er[er==mat_er] = i
|
||
fmaterials.write(f'#material: {mat_er} 0 1 0 mat{i}\n')
|
||
|
||
# Write permittivity HDF5 file
|
||
with h5py.File(fn.with_suffix('.h5'), 'w') as fdata:
|
||
fdata.attrs['Title'] = modeltitle
|
||
fdata.attrs['dx_dy_dz'] = (dl, dl, dl)
|
||
fdata['/data'] = er.astype('int16')
|
||
|
||
# Build FDTD model
|
||
scene = gprMax.Scene()
|
||
|
||
title = gprMax.Title(name=modeltitle)
|
||
domain = gprMax.Domain(p1=(x, y, z))
|
||
dxdydz = gprMax.Discretisation(p1=(dl, dl, dl))
|
||
time_window = gprMax.TimeWindow(time=maxtime)
|
||
|
||
scene.add(title)
|
||
scene.add(domain)
|
||
scene.add(dxdydz)
|
||
scene.add(time_window)
|
||
|
||
go = gprMax.GeometryObjectsRead(p1=(0, 0, 0), geofile=fn.with_suffix('.h5'),
|
||
matfile=fn.with_suffix('.txt'))
|
||
|
||
# Specify waveforms and sources from reversed B-scan data
|
||
for i in range(data.shape[1]):
|
||
wv = gprMax.Waveform(wave_type='user',
|
||
user_values=np.flipud(data[:,i]), user_time=time,
|
||
kind='linear', fill_value='extrapolate',
|
||
id='mypulse' + str(i + 1))
|
||
scene.add(wv)
|
||
src = gprMax.HertzianDipole(polarisation='y',
|
||
p1=((pml_cells + extra_cells) * dl + i * trac_int,
|
||
0, domain.props.p1[2] - (pml_cells + extra_cells) * dl),
|
||
waveform_id='mypulse' + str(i + 1))
|
||
scene.add(src)
|
||
|
||
gv = gprMax.GeometryView(p1=(0, 0, 0), p2=domain.props.p1, dl=(dl, dl, dl),
|
||
filename=fn.with_suffix('').parts[-1],
|
||
output_type='n')
|
||
|
||
# Snapshot at end of time window is RTM result
|
||
fileext = '.h5' # Can also be '.vti' for a VTK format
|
||
snap = gprMax.Snapshot(p1=((pml_cells + extra_cells) * dl,
|
||
0,
|
||
(pml_cells + extra_cells) * dl),
|
||
p2=(domain.props.p1[0] - (pml_cells + extra_cells) * dl,
|
||
dl,
|
||
domain.props.p1[2] - (pml_cells + extra_cells) * dl),
|
||
dl=(dl, dl, dl),
|
||
filename=fn.with_suffix('').parts[-1] + '_rtm_result',
|
||
fileext=fileext, time=maxtime)
|
||
|
||
scene.add(go)
|
||
scene.add(gv)
|
||
scene.add(snap)
|
||
|
||
# Run FDTD model
|
||
#gprMax.run(scenes=[scene], n=1, geometry_only=False, outputfile=fn)
|
||
|
||
# Open RTM results file
|
||
filename = Path(str(fn) + '_snaps', fn.with_suffix('').parts[-1] + '_rtm_result' + fileext)
|
||
fieldcomponent = 'Ey'
|
||
with h5py.File(filename, 'r') as f:
|
||
outputdata = f[fieldcomponent]
|
||
outputdata = np.array(outputdata)
|
||
time = f.attrs['time']
|
||
|
||
# Manipulation/processing of outputdata
|
||
outputdata = outputdata.squeeze()
|
||
outputdata = outputdata.transpose()
|
||
|
||
# Plot RTM result
|
||
min_max_plt = (-1000, 1000)
|
||
fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, num=str(filename),
|
||
figsize=(15, 10), facecolor='w', edgecolor='w')
|
||
orig_plt = ax1.imshow(data, extent=[0, data.shape[1] * trac_int,
|
||
(data.shape[0] * samp_int) / 2 * v, 0], interpolation='nearest',
|
||
aspect='auto', cmap='viridis', vmin=-np.amax(np.abs(data)),
|
||
vmax=np.amax(np.abs(data)))
|
||
ax1.set_xlabel('Distance [m]')
|
||
ax1.set_ylabel('Depth [m]')
|
||
ax1.title.set_text('Original')
|
||
ax1.grid(which='both', axis='both', linestyle='-.')
|
||
cb1 = plt.colorbar(orig_plt, ax=ax1)
|
||
cb1.set_label(fieldcomponent + ' [V/m]')
|
||
|
||
rtm_plt = ax2.imshow(np.flipud(outputdata),
|
||
extent=[0, outputdata.shape[1] * dl, depth, 0],
|
||
interpolation='nearest', aspect='auto', cmap='viridis',
|
||
vmin=-np.amax(np.abs(outputdata)),
|
||
vmax=np.amax(np.abs(outputdata)))
|
||
ax2.set_xlabel('Distance [m]')
|
||
ax2.set_ylabel('Depth [m]')
|
||
ax2.title.set_text('RTM')
|
||
ax2.grid(which='both', axis='both', linestyle='-.')
|
||
cb2 = plt.colorbar(rtm_plt, ax=ax2)
|
||
cb2.set_label(fieldcomponent + ' [V/m]')
|
||
|
||
# Save a PDF/PNG of the figure
|
||
# fig.savefig(filename.with_suffix('.pdf'), dpi=None, format='pdf',
|
||
# bbox_inches='tight', pad_inches=0.1)
|
||
# fig.savefig(filename.with_suffix('.png'), dpi=150, format='png',
|
||
# bbox_inches='tight', pad_inches=0.1)
|
||
|
||
plt.show() |