你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-03 19:26:50 +08:00
49 行
2.1 KiB
Plaintext
可执行文件
49 行
2.1 KiB
Plaintext
可执行文件
#title: GSSI 1.5GHz antenna field patterns
|
|
#dx_dy_dz: 0.001 0.001 0.001
|
|
#pml_cells: 14
|
|
|
|
#python:
|
|
import os
|
|
import numpy as np
|
|
|
|
from gprMax.input_cmd_funcs import *
|
|
from user_libs.antennas.GSSI import antenna_like_GSSI_1500
|
|
|
|
filename = os.path.splitext(os.path.split(inputfile)[1])[0]
|
|
|
|
timewindows = np.array([4.5e-9]) # For 0.3m max
|
|
radii = np.linspace(0.1, 0.3, 20)
|
|
theta = np.linspace(3, 357, 60)
|
|
materials = ['5 0 1 0 er5'] # Can add more to list and use selector integer to choose
|
|
selector = 0
|
|
|
|
fs = np.array([0.040, 0.040, 0.040])
|
|
domain = np.array([2 * fs[0] + 0.170, 2 * fs[1] + 2 * radii[-1], 2 * fs[2] + 2 * radii[-1]])
|
|
antennaposition = np.array([domain[0] / 2, fs[1] + radii[-1], fs[2] + radii[-1]])
|
|
antenna_like_GSSI_1500(antennaposition[0], antennaposition[1], antennaposition[2])
|
|
|
|
print('#domain: {:.3f} {:.3f} {:.3f}'.format(domain[0], domain[1], domain[2]))
|
|
print('#time_window: {:.3e}'.format(timewindows[selector]))
|
|
|
|
## Can introduce soil model
|
|
#print('#soil_peplinski: 0.5 0.5 2.0 2.66 0.001 0.25 mySoil')
|
|
#print('#fractal_box: 0 0 0 {} {} {} 1.5 1 1 1 50 mySoil mySoilBox 1'.format(domain[0], domain[1], fs[2] + radii[-1]))
|
|
|
|
print('#material: {}'.format(materials[selector]))
|
|
print('#box: 0 0 0 {} {} {} {} n'.format(domain[0], domain[1], fs[2] + radii[-1], materials[selector].split()[-1]))
|
|
|
|
## Save the position of the antenna to file for use when processing results
|
|
np.savetxt(os.path.join(os.path.dirname(inputfile), filename + '_rxsorigin.txt'), antennaposition, fmt="%f")
|
|
|
|
## Generate receiver points for pattern
|
|
for radius in range(len(radii)):
|
|
## E-plane circle (yz plane, x=0, phi=pi/2,3pi/2)
|
|
x = radii[radius] * np.sin(theta * np.pi /180) * np.cos(90 * np.pi / 180)
|
|
y = radii[radius] * np.sin(theta * np.pi /180) * np.sin(90 * np.pi / 180)
|
|
z = radii[radius] * np.cos(theta * np.pi /180)
|
|
for rxpt in range(len(theta)):
|
|
print('#rx: {:.3f} {:.3f} {:.3f}'.format(x[rxpt] + antennaposition[0], y[rxpt] + antennaposition[1], z[rxpt] + antennaposition[2]))
|
|
|
|
geometry_view(0, 0, 0, domain[0], domain[1], domain[2], 0.001, 0.001, 0.001, filename, 'n')
|
|
#end_python:
|