你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-03 19:26:50 +08:00
226 行
10 KiB
Python
226 行
10 KiB
Python
# Copyright (C) 2015-2023: The University of Edinburgh
|
||
# Authors: Craig Warren and Antonis Giannopoulos
|
||
#
|
||
# This file is part of gprMax.
|
||
#
|
||
# gprMax is free software: you can redistribute it and/or modify
|
||
# it under the terms of the GNU General Public License as published by
|
||
# the Free Software Foundation, either version 3 of the License, or
|
||
# (at your option) any later version.
|
||
#
|
||
# gprMax is distributed in the hope that it will be useful,
|
||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
# GNU General Public License for more details.
|
||
#
|
||
# You should have received a copy of the GNU General Public License
|
||
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||
|
||
import argparse
|
||
import os
|
||
|
||
import h5py
|
||
import numpy as np
|
||
import matplotlib.pyplot as plt
|
||
|
||
from gprMax.exceptions import CmdInputError
|
||
from gprMax.receivers import Rx
|
||
from gprMax.utilities import fft_power
|
||
|
||
|
||
def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False):
|
||
"""Plots electric and magnetic fields and currents from all receiver points in the given output file. Each receiver point is plotted in a new figure window.
|
||
|
||
Args:
|
||
filename (string): Filename (including path) of output file.
|
||
outputs (list): List of field/current components to plot.
|
||
fft (boolean): Plot FFT switch.
|
||
|
||
Returns:
|
||
plt (object): matplotlib plot object.
|
||
"""
|
||
|
||
# Open output file and read some attributes
|
||
f = h5py.File(filename, 'r')
|
||
nrx = f.attrs['nrx']
|
||
dt = f.attrs['dt']
|
||
iterations = f.attrs['Iterations']
|
||
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
|
||
|
||
# Check there are any receivers
|
||
if nrx == 0:
|
||
raise CmdInputError('No receivers found in {}'.format(filename))
|
||
|
||
# Check for single output component when doing a FFT
|
||
if fft:
|
||
if not len(outputs) == 1:
|
||
raise CmdInputError('A single output must be specified when using the -fft option')
|
||
|
||
# New plot for each receiver
|
||
for rx in range(1, nrx + 1):
|
||
path = '/rxs/rx' + str(rx) + '/'
|
||
availableoutputs = list(f[path].keys())
|
||
|
||
# If only a single output is required, create one subplot
|
||
if len(outputs) == 1:
|
||
|
||
# Check for polarity of output and if requested output is in file
|
||
if outputs[0][-1] == '-':
|
||
polarity = -1
|
||
outputtext = '-' + outputs[0][0:-1]
|
||
output = outputs[0][0:-1]
|
||
else:
|
||
polarity = 1
|
||
outputtext = outputs[0]
|
||
output = outputs[0]
|
||
|
||
if output not in availableoutputs:
|
||
raise CmdInputError('{} output requested to plot, but the available output for receiver 1 is {}'.format(output, ', '.join(availableoutputs)))
|
||
|
||
outputdata = f[path + output][:] * polarity
|
||
|
||
# Plotting if FFT required
|
||
if fft:
|
||
# FFT
|
||
freqs, power = fft_power(outputdata, dt)
|
||
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
|
||
|
||
# Set plotting range to -60dB from maximum power or 4 times
|
||
# frequency at maximum power
|
||
try:
|
||
pltrange = np.where(power[freqmaxpower:] < -60)[0][0] + freqmaxpower + 1
|
||
except:
|
||
pltrange = freqmaxpower * 4
|
||
|
||
pltrange = np.s_[0:pltrange]
|
||
|
||
# Plot time history of output component
|
||
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||
line1 = ax1.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||
ax1.set_xlabel('Time [s]')
|
||
ax1.set_ylabel(outputtext + ' field strength [V/m]')
|
||
ax1.set_xlim([0, np.amax(time)])
|
||
ax1.grid(which='both', axis='both', linestyle='-.')
|
||
|
||
# Plot frequency spectra
|
||
markerline, stemlines, baseline = ax2.stem(freqs[pltrange], power[pltrange], '-.')
|
||
plt.setp(baseline, 'linewidth', 0)
|
||
plt.setp(stemlines, 'color', 'r')
|
||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||
line2 = ax2.plot(freqs[pltrange], power[pltrange], 'r', lw=2)
|
||
ax2.set_xlabel('Frequency [Hz]')
|
||
ax2.set_ylabel('Power [dB]')
|
||
ax2.grid(which='both', axis='both', linestyle='-.')
|
||
|
||
# Change colours and labels for magnetic field components or currents
|
||
if 'H' in outputs[0]:
|
||
plt.setp(line1, color='g')
|
||
plt.setp(line2, color='g')
|
||
plt.setp(ax1, ylabel=outputtext + ' field strength [A/m]')
|
||
plt.setp(stemlines, 'color', 'g')
|
||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||
elif 'I' in outputs[0]:
|
||
plt.setp(line1, color='b')
|
||
plt.setp(line2, color='b')
|
||
plt.setp(ax1, ylabel=outputtext + ' current [A]')
|
||
plt.setp(stemlines, 'color', 'b')
|
||
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||
|
||
plt.show()
|
||
|
||
# Plotting if no FFT required
|
||
else:
|
||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]', ylabel=outputtext + ' field strength [V/m]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||
line = ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||
ax.set_xlim([0, np.amax(time)])
|
||
ax.grid(which='both', axis='both', linestyle='-.')
|
||
|
||
if 'H' in output:
|
||
plt.setp(line, color='g')
|
||
plt.setp(ax, ylabel=outputtext + ', field strength [A/m]')
|
||
elif 'I' in output:
|
||
plt.setp(line, color='b')
|
||
plt.setp(ax, ylabel=outputtext + ', current [A]')
|
||
|
||
# If multiple outputs required, create all nine subplots and populate only the specified ones
|
||
else:
|
||
plt_cols = 3 if len(outputs) == 9 else 2
|
||
|
||
fig, axs = plt.subplots(
|
||
subplot_kw=dict(xlabel="Time [s]"),
|
||
num='rx' + str(rx),
|
||
figsize=(20, 10),
|
||
nrows = 3,
|
||
ncols = plt_cols,
|
||
facecolor="w",
|
||
edgecolor="w",
|
||
)
|
||
|
||
for output in outputs:
|
||
# Check for polarity of output and if requested output is in file
|
||
if output[-1] == '-':
|
||
polarity = -1
|
||
outputtext = '-' + output[0:-1]
|
||
output = output[0:-1]
|
||
else:
|
||
polarity = 1
|
||
outputtext = output
|
||
|
||
# Check if requested output is in file
|
||
if output not in availableoutputs:
|
||
raise CmdInputError('Output(s) requested to plot: {}, but available output(s) for receiver {} in the file: {}'.format(', '.join(outputs), rx, ', '.join(availableoutputs)))
|
||
|
||
outputdata = f[path + output][:] * polarity
|
||
|
||
if output == "Ex":
|
||
axs[0, 0].plot(time, outputdata, "r", lw=2, label=outputtext)
|
||
axs[0, 0].set_ylabel(outputtext + ", field strength [V/m]")
|
||
elif output == "Ey":
|
||
axs[1, 0].plot(time, outputdata, "r", lw=2, label=outputtext)
|
||
axs[1, 0].set_ylabel(outputtext + ", field strength [V/m]")
|
||
elif output == "Ez":
|
||
axs[2, 0].plot(time, outputdata, "r", lw=2, label=outputtext)
|
||
axs[2, 0].set_ylabel(outputtext + ", field strength [V/m]")
|
||
elif output == "Hx":
|
||
axs[0, 1].plot(time, outputdata, "g", lw=2, label=outputtext)
|
||
axs[0, 1].set_ylabel(outputtext + ", field strength [A/m]")
|
||
elif output == "Hy":
|
||
axs[1, 1].plot(time, outputdata, "g", lw=2, label=outputtext)
|
||
axs[1, 1].set_ylabel(outputtext + ", field strength [A/m]")
|
||
elif output == "Hz":
|
||
axs[2, 1].plot(time, outputdata, "g", lw=2, label=outputtext)
|
||
axs[2, 1].set_ylabel(outputtext + ", field strength [A/m]")
|
||
elif output == "Ix":
|
||
axs[0, 2].plot(time, outputdata, "b", lw=2, label=outputtext)
|
||
axs[0, 2].set_ylabel(outputtext + ", current [A]")
|
||
elif output == "Iy":
|
||
axs[1, 2].plot(time, outputdata, "b", lw=2, label=outputtext)
|
||
axs[1, 2].set_ylabel(outputtext + ", current [A]")
|
||
elif output == "Iz":
|
||
axs[2, 2].plot(time, outputdata, "b", lw=2, label=outputtext)
|
||
axs[2, 2].set_ylabel(outputtext + ", current [A]")
|
||
for ax in fig.axes:
|
||
ax.set_xlim([0, np.amax(time)])
|
||
ax.grid(which="both", axis="both", linestyle="-.")
|
||
|
||
# Save a PDF/PNG of the figure
|
||
# fig.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_rx' + str(rx) + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||
# fig.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_rx' + str(rx) + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||
|
||
f.close()
|
||
|
||
return plt
|
||
|
||
|
||
if __name__ == "__main__":
|
||
|
||
# Parse command line arguments
|
||
parser = argparse.ArgumentParser(description='Plots electric and magnetic fields and currents from all receiver points in the given output file. Each receiver point is plotted in a new figure window.', usage='cd gprMax; python -m tools.plot_Ascan outputfile')
|
||
parser.add_argument('outputfile', help='name of output file including path')
|
||
parser.add_argument('--outputs', help='outputs to be plotted', default=Rx.defaultoutputs, choices=['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz', 'Ix', 'Iy', 'Iz', 'Ex-', 'Ey-', 'Ez-', 'Hx-', 'Hy-', 'Hz-', 'Ix-', 'Iy-', 'Iz-'], nargs='+')
|
||
parser.add_argument('-fft', action='store_true', help='plot FFT (single output must be specified)', default=False)
|
||
args = parser.parse_args()
|
||
|
||
plthandle = mpl_plot(args.outputfile, args.outputs, fft=args.fft)
|
||
plthandle.show()
|