你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-03 19:26:50 +08:00
159 行
4.8 KiB
Python
159 行
4.8 KiB
Python
import numpy as np
|
|
|
|
from gprMax.constants import c, e0
|
|
from gprMax.waveforms import Waveform
|
|
|
|
|
|
def hertzian_dipole_fs(iterations, dt, dxdydz, rx):
|
|
"""Analytical solution of a z-directed Hertzian dipole in free space with a Gaussian current waveform (http://dx.doi.org/10.1016/0021-9991(83)90103-1).
|
|
|
|
Args:
|
|
iterations (int): Number of time steps.
|
|
dt (float): Time step (seconds).
|
|
dxdydz (float): Tuple of spatial resolution (metres).
|
|
rx (float): Tuple of coordinates of receiver position relative to transmitter position (metres).
|
|
|
|
Returns:
|
|
fields (float): Array contain electric and magnetic field components.
|
|
"""
|
|
|
|
# Waveform
|
|
w = Waveform()
|
|
w.type = 'gaussianprime'
|
|
w.amp = 1
|
|
w.freq = 1e9
|
|
|
|
# Waveform integral
|
|
wint = Waveform()
|
|
wint.type = 'gaussian'
|
|
wint.amp = w.amp
|
|
wint.freq = w.freq
|
|
|
|
# Waveform first derivative
|
|
wdot = Waveform()
|
|
wdot.type = 'gaussiandoubleprime'
|
|
wdot.amp = w.amp
|
|
wdot.freq = w.freq
|
|
|
|
# Time
|
|
time = np.linspace(0, 1, iterations)
|
|
time *= (iterations * dt)
|
|
|
|
# Spatial resolution
|
|
dx = dxdydz[0]
|
|
dy = dxdydz[1]
|
|
dz = dxdydz[2]
|
|
|
|
# Length of Hertzian dipole
|
|
dl = dz
|
|
|
|
# Coordinates of Rx relative to Tx
|
|
x = rx[0]
|
|
y = rx[1]
|
|
z = rx[2]
|
|
if z == 0:
|
|
sign_z = 1
|
|
else:
|
|
sign_z = np.sign(z)
|
|
|
|
# Coordinates of Rx for Ex FDTD component
|
|
Ex_x = x + 0.5 * dx
|
|
Ex_y = y
|
|
Ex_z = z - 0.5 * dz
|
|
Er_x = np.sqrt((Ex_x**2 + Ex_y**2 + Ex_z**2))
|
|
tau_Ex = Er_x / c
|
|
|
|
# Coordinates of Rx for Ey FDTD component
|
|
Ey_x = x
|
|
Ey_y = y + 0.5 * dy
|
|
Ey_z = z - 0.5 * dz
|
|
Er_y = np.sqrt((Ey_x**2 + Ey_y**2 + Ey_z**2))
|
|
tau_Ey = Er_y / c
|
|
|
|
# Coordinates of Rx for Ez FDTD component
|
|
Ez_x = x
|
|
Ez_y = y
|
|
Ez_z = z
|
|
Er_z = np.sqrt((Ez_x**2 + Ez_y**2 + Ez_z**2))
|
|
tau_Ez = Er_z / c
|
|
|
|
# Coordinates of Rx for Hx FDTD component
|
|
Hx_x = x
|
|
Hx_y = y + 0.5 * dy
|
|
Hx_z = z
|
|
Hr_x = np.sqrt((Hx_x**2 + Hx_y**2 + Hx_z**2))
|
|
tau_Hx = Hr_x / c
|
|
|
|
# Coordinates of Rx for Hy FDTD component
|
|
Hy_x = x + 0.5 * dx
|
|
Hy_y = y
|
|
Hy_z = z
|
|
Hr_y = np.sqrt((Hy_x**2 + Hy_y**2 + Hy_z**2))
|
|
tau_Hy = Hr_y / c
|
|
|
|
# Coordinates of Rx for Hz FDTD component
|
|
Hz_x = x + 0.5 * dx
|
|
Hz_y = y + 0.5 * dy
|
|
Hz_z = z - 0.5 * dz
|
|
Hr_z = np.sqrt((Hz_x**2 + Hz_y**2 + Hz_z**2))
|
|
tau_Hz = Hr_z / c
|
|
|
|
# Initialise fields
|
|
fields = np.zeros((iterations, 6))
|
|
|
|
# Calculate fields
|
|
for timestep in range(iterations):
|
|
|
|
# Calculate values for waveform, I * dl (current multiplied by dipole length) to match gprMax behaviour
|
|
fint_Ex = wint.calculate_value((timestep * dt) - tau_Ex, dt) * dl
|
|
f_Ex = w.calculate_value((timestep * dt) - tau_Ex, dt) * dl
|
|
fdot_Ex = wdot.calculate_value((timestep * dt) - tau_Ex, dt) * dl
|
|
|
|
fint_Ey = wint.calculate_value((timestep * dt) - tau_Ey, dt) * dl
|
|
f_Ey = w.calculate_value((timestep * dt) - tau_Ey, dt) * dl
|
|
fdot_Ey = wdot.calculate_value((timestep * dt) - tau_Ey, dt) * dl
|
|
|
|
fint_Ez = wint.calculate_value((timestep * dt) - tau_Ez, dt) * dl
|
|
f_Ez = w.calculate_value((timestep * dt) - tau_Ez, dt) * dl
|
|
fdot_Ez = wdot.calculate_value((timestep * dt) - tau_Ez, dt) * dl
|
|
|
|
fint_Hx = wint.calculate_value((timestep * dt) - tau_Hx, dt) * dl
|
|
f_Hx = w.calculate_value((timestep * dt) - tau_Hx, dt) * dl
|
|
fdot_Hx = wdot.calculate_value((timestep * dt) - tau_Hx, dt) * dl
|
|
|
|
fint_Hy = wint.calculate_value((timestep * dt) - tau_Hy, dt) * dl
|
|
f_Hy = w.calculate_value((timestep * dt) - tau_Hy, dt) * dl
|
|
fdot_Hy = wdot.calculate_value((timestep * dt) - tau_Hy, dt) * dl
|
|
|
|
fint_Hz = wint.calculate_value((timestep * dt) - tau_Hz, dt) * dl
|
|
f_Hz = w.calculate_value((timestep * dt) - tau_Hz, dt) * dl
|
|
fdot_Hz = wdot.calculate_value((timestep * dt) - tau_Hz, dt) * dl
|
|
|
|
# Ex
|
|
fields[timestep, 0] = ((Ex_x * Ex_z) / (4 * np.pi * e0 * Er_x**5)) * (3 * (fint_Ex + (tau_Ex * f_Ex)) + (tau_Ex**2 * fdot_Ex))
|
|
|
|
# Ey
|
|
try:
|
|
tmp = Ey_y / Ey_x
|
|
except ZeroDivisionError:
|
|
tmp = 0
|
|
fields[timestep, 1] = tmp * ((Ey_x * Ey_z) / (4 * np.pi * e0 * Er_y**5)) * (3 * (fint_Ey + (tau_Ey * f_Ey)) + (tau_Ey**2 * fdot_Ey))
|
|
|
|
# Ez
|
|
fields[timestep, 2] = (1 / (4 * np.pi * e0 * Er_z**5)) * ((2 * Ez_z**2 - (Ez_x**2 + Ez_y**2)) * (fint_Ez + (tau_Ez * f_Ez)) - (Ez_x**2 + Ez_y**2) * tau_Ez**2 * fdot_Ez)
|
|
|
|
# Hx
|
|
fields[timestep, 3] = - (Hx_y / (4 * np.pi * Hr_x**3)) * (f_Hx + (tau_Hx * fdot_Hx))
|
|
|
|
# Hy
|
|
try:
|
|
tmp = Hy_x / Hy_y
|
|
except ZeroDivisionError:
|
|
tmp = 0
|
|
fields[timestep, 4] = - tmp * (- (Hy_y / (4 * np.pi * Hr_y**3)) * (f_Hy + (tau_Hy * fdot_Hy)))
|
|
|
|
# Hz
|
|
fields[timestep, 5] = 0
|
|
|
|
return fields
|