# Copyright (C) 2015-2023: The University of Edinburgh, United Kingdom # Authors: Craig Warren, Antonis Giannopoulos, and John Hartley # # This file is part of gprMax. # # gprMax is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # gprMax is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with gprMax. If not, see . import argparse import logging from pathlib import Path import h5py import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import numpy as np from gprMax.receivers import Rx from gprMax.utilities.utilities import fft_power logger = logging.getLogger(__name__) def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False, save=False): """Plots electric and magnetic fields and currents from all receiver points in the given output file. Each receiver point is plotted in a new figure window. Args: filename: string of filename (including path) of output file. outputs: list of field/current components to plot. fft: boolean flag to plot FFT. save: boolean flag to save plot to file. Returns: plt: matplotlib plot object. """ file = Path(filename) # Open output file and read iterations f = h5py.File(file, "r") # Paths to grid(s) to traverse for outputs paths = ["/"] # Check if any subgrids and add path(s) is_subgrids = "/subgrids" in f if is_subgrids: paths = paths + ["/subgrids/" + path + "/" for path in f["/subgrids"].keys()] # Get number of receivers in grid(s) nrxs = [] for path in paths: if f[path].attrs["nrx"] > 0: nrxs.append(f[path].attrs["nrx"]) else: paths.remove(path) # Check there are any receivers if not paths: logger.exception(f"No receivers found in {file}") raise ValueError # Loop through all grids for path in paths: iterations = f[path].attrs["Iterations"] nrx = f[path].attrs["nrx"] dt = f[path].attrs["dt"] time = np.linspace(0, (iterations - 1) * dt, num=iterations) # Check for single output component when doing a FFT if fft and not len(outputs) == 1: logger.exception("A single output must be specified when using " + "the -fft option") raise ValueError # New plot for each receiver for rx in range(1, nrx + 1): rxpath = path + "rxs/rx" + str(rx) + "/" availableoutputs = list(f[rxpath].keys()) # If only a single output is required, create one subplot if len(outputs) == 1: # Check for polarity of output and if requested output is in file if outputs[0][-1] == "-": polarity = -1 outputtext = "-" + outputs[0][0:-1] output = outputs[0][0:-1] else: polarity = 1 outputtext = outputs[0] output = outputs[0] if output not in availableoutputs: logger.exception( f"{output} output requested to plot, but " + f"the available output for receiver 1 is " + f"{', '.join(availableoutputs)}" ) raise ValueError outputdata = f[rxpath + output][:] * polarity # Plotting if FFT required if fft: # FFT freqs, power = fft_power(outputdata, dt) freqmaxpower = np.where(np.isclose(power, 0))[0][0] # Set plotting range to -60dB from maximum power or 4 times # frequency at maximum power try: pltrange = np.where(power[freqmaxpower:] < -60)[0][0] + freqmaxpower + 1 except: pltrange = freqmaxpower * 4 pltrange = np.s_[0:pltrange] # Plot time history of output component fig, (ax1, ax2) = plt.subplots( nrows=1, ncols=2, num=rxpath + " - " + f[rxpath].attrs["Name"], figsize=(20, 10), facecolor="w", edgecolor="w", ) line1 = ax1.plot(time, outputdata, "r", lw=2, label=outputtext) ax1.set_xlabel("Time [s]") ax1.set_ylabel(outputtext + " field strength [V/m]") ax1.set_xlim([0, np.amax(time)]) ax1.grid(which="both", axis="both", linestyle="-.") # Plot frequency spectra markerline, stemlines, baseline = ax2.stem( freqs[pltrange], power[pltrange], "-.", use_line_collection=True ) plt.setp(baseline, "linewidth", 0) plt.setp(stemlines, "color", "r") plt.setp(markerline, "markerfacecolor", "r", "markeredgecolor", "r") line2 = ax2.plot(freqs[pltrange], power[pltrange], "r", lw=2) ax2.set_xlabel("Frequency [Hz]") ax2.set_ylabel("Power [dB]") ax2.grid(which="both", axis="both", linestyle="-.") # Change colours and labels for magnetic field components # or currents if "H" in outputs[0]: plt.setp(line1, color="g") plt.setp(line2, color="g") plt.setp(ax1, ylabel=outputtext + " field strength [A/m]") plt.setp(stemlines, "color", "g") plt.setp(markerline, "markerfacecolor", "g", "markeredgecolor", "g") elif "I" in outputs[0]: plt.setp(line1, color="b") plt.setp(line2, color="b") plt.setp(ax1, ylabel=outputtext + " current [A]") plt.setp(stemlines, "color", "b") plt.setp(markerline, "markerfacecolor", "b", "markeredgecolor", "b") plt.show() # Plotting if no FFT required else: fig, ax = plt.subplots( subplot_kw=dict(xlabel="Time [s]", ylabel=outputtext + " field strength [V/m]"), num=rxpath + " - " + f[rxpath].attrs["Name"], figsize=(20, 10), facecolor="w", edgecolor="w", ) line = ax.plot(time, outputdata, "r", lw=2, label=outputtext) ax.set_xlim([0, np.amax(time)]) # ax.set_ylim([-15, 20]) ax.grid(which="both", axis="both", linestyle="-.") if "H" in output: plt.setp(line, color="g") plt.setp(ax, ylabel=outputtext + ", field strength [A/m]") elif "I" in output: plt.setp(line, color="b") plt.setp(ax, ylabel=outputtext + ", current [A]") # If multiple outputs required, create all nine subplots and # populate only the specified ones else: fig, ax = plt.subplots( subplot_kw=dict(xlabel="Time [s]"), num=rxpath + " - " + f[rxpath].attrs["Name"], figsize=(20, 10), facecolor="w", edgecolor="w", ) if len(outputs) == 9: gs = gridspec.GridSpec(3, 3, hspace=0.3, wspace=0.3) else: gs = gridspec.GridSpec(3, 2, hspace=0.3, wspace=0.3) for output in outputs: # Check for polarity of output and if requested output # is in file if output[-1] == "m": polarity = -1 outputtext = "-" + output[0:-1] output = output[0:-1] else: polarity = 1 outputtext = output # Check if requested output is in file if output not in availableoutputs: logger.exception( f"Output(s) requested to plot: " + f"{', '.join(outputs)}, but available output(s) " + f"for receiver {rx} in the file: " + f"{', '.join(availableoutputs)}" ) raise ValueError outputdata = f[rxpath + output][:] * polarity if output == "Ex": ax = plt.subplot(gs[0, 0]) ax.plot(time, outputdata, "r", lw=2, label=outputtext) ax.set_ylabel(outputtext + ", field strength [V/m]") # ax.set_ylim([-15, 20]) elif output == "Ey": ax = plt.subplot(gs[1, 0]) ax.plot(time, outputdata, "r", lw=2, label=outputtext) ax.set_ylabel(outputtext + ", field strength [V/m]") # ax.set_ylim([-15, 20]) elif output == "Ez": ax = plt.subplot(gs[2, 0]) ax.plot(time, outputdata, "r", lw=2, label=outputtext) ax.set_ylabel(outputtext + ", field strength [V/m]") # ax.set_ylim([-15, 20]) elif output == "Hx": ax = plt.subplot(gs[0, 1]) ax.plot(time, outputdata, "g", lw=2, label=outputtext) ax.set_ylabel(outputtext + ", field strength [A/m]") # ax.set_ylim([-0.03, 0.03]) elif output == "Hy": ax = plt.subplot(gs[1, 1]) ax.plot(time, outputdata, "g", lw=2, label=outputtext) ax.set_ylabel(outputtext + ", field strength [A/m]") # ax.set_ylim([-0.03, 0.03]) elif output == "Hz": ax = plt.subplot(gs[2, 1]) ax.plot(time, outputdata, "g", lw=2, label=outputtext) ax.set_ylabel(outputtext + ", field strength [A/m]") # ax.set_ylim([-0.03, 0.03]) elif output == "Ix": ax = plt.subplot(gs[0, 2]) ax.plot(time, outputdata, "b", lw=2, label=outputtext) ax.set_ylabel(outputtext + ", current [A]") elif output == "Iy": ax = plt.subplot(gs[1, 2]) ax.plot(time, outputdata, "b", lw=2, label=outputtext) ax.set_ylabel(outputtext + ", current [A]") elif output == "Iz": ax = plt.subplot(gs[2, 2]) ax.plot(time, outputdata, "b", lw=2, label=outputtext) ax.set_ylabel(outputtext + ", current [A]") for ax in fig.axes: ax.set_xlim([0, np.amax(time)]) ax.grid(which="both", axis="both", linestyle="-.") f.close() if save: # Save a PDF of the figure fig.savefig(filename[:-3] + ".pdf", dpi=None, format="pdf", bbox_inches="tight", pad_inches=0.1) # Save a PNG of the figure # fig.savefig(filename[:-3] + '.png', dpi=150, format='png', # bbox_inches='tight', pad_inches=0.1) return plt if __name__ == "__main__": # Parse command line arguments parser = argparse.ArgumentParser( description="Plots electric and magnetic fields and " + "currents from all receiver points in the given output file. " + "Each receiver point is plotted in a new figure window.", usage="cd gprMax; python -m toolboxes.Plotting.plot_Ascan outputfile", ) parser.add_argument("outputfile", help="name of output file including path") parser.add_argument( "--outputs", help="outputs to be plotted", default=Rx.defaultoutputs, choices=[ "Ex", "Ey", "Ez", "Hx", "Hy", "Hz", "Ix", "Iy", "Iz", "Ex-", "Ey-", "Ez-", "Hx-", "Hy-", "Hz-", "Ix-", "Iy-", "Iz-", ], nargs="+", ) parser.add_argument("-fft", action="store_true", default=False, help="plot FFT (single output must be specified)") parser.add_argument( "-save", action="store_true", default=False, help="save plot directly to file, i.e. do not display" ) args = parser.parse_args() plthandle = mpl_plot(args.outputfile, args.outputs, fft=args.fft, save=args.save) plthandle.show()