# Copyright (C) 2015-2024: The University of Edinburgh, United Kingdom # Authors: Craig Warren, Antonis Giannopoulos, and John Hartley # # This file is part of gprMax. # # gprMax is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # gprMax is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with gprMax. If not, see . import decimal import itertools import logging import sys from collections import OrderedDict from typing import Any, Iterable, List, Tuple, Union import numpy as np import numpy.typing as npt from terminaltables import AsciiTable from tqdm import tqdm from typing_extensions import TypeVar from gprMax import config from gprMax.cython.pml_build import pml_average_er_mr from gprMax.cython.yee_cell_build import build_electric_components, build_magnetic_components from gprMax.fractals import FractalVolume from gprMax.materials import ListMaterial, Material, PeplinskiSoil, RangeMaterial, process_materials from gprMax.pml import CFS, PML, print_pml_info from gprMax.receivers import Rx from gprMax.snapshots import Snapshot from gprMax.sources import HertzianDipole, MagneticDipole, Source, TransmissionLine, VoltageSource from gprMax.utilities.utilities import fft_power, get_terminal_width, round_value from gprMax.waveforms import Waveform logger = logging.getLogger(__name__) class FDTDGrid: """Holds attributes associated with entire grid. A convenient way for accessing regularly used parameters. """ IDlookup = {"Ex": 0, "Ey": 1, "Ez": 2, "Hx": 3, "Hy": 4, "Hz": 5} def __init__(self): self.name = "main_grid" self.mem_use = 0 self.nx = 0 self.ny = 0 self.nz = 0 self.dl = np.ones(3, dtype=np.float64) self.dt = 0.0 self.iterations = 0 # Total number of iterations self.timewindow = 0.0 # Field Arrays self.Ex: npt.NDArray[np.float32] self.Ey: npt.NDArray[np.float32] self.Ez: npt.NDArray[np.float32] self.Hx: npt.NDArray[np.float32] self.Hy: npt.NDArray[np.float32] self.Hz: npt.NDArray[np.float32] # Dispersive Arrays self.Tx: npt.NDArray[np.float32] self.Ty: npt.NDArray[np.float32] self.Tz: npt.NDArray[np.float32] # Geometry Arrays self.solid: npt.NDArray[np.uint32] self.rigidE: npt.NDArray[np.int8] self.rigidH: npt.NDArray[np.int8] self.ID: npt.NDArray[np.uint32] # Update Coefficient Arrays self.updatecoeffsE: npt.NDArray[np.float32] self.updatecoeffsH: npt.NDArray[np.float32] self.updatecoeffsdispersive: npt.NDArray[np.float32] # PML parameters - set some defaults to use if not user provided self.pmls = {} self.pmls["formulation"] = "HORIPML" self.pmls["cfs"] = [] self.pmls["slabs"] = [] # Ordered dictionary required so *updating* the PMLs always follows the # same order (the order for *building* PMLs does not matter). The order # itself does not matter, however, if must be the same from model to # model otherwise the numerical precision from adding the PML # corrections will be different. self.pmls["thickness"] = OrderedDict((key, 10) for key in PML.boundaryIDs) # Materials used by this grid self.materials: List[Material] = [] self.mixingmodels: List[Union[PeplinskiSoil, RangeMaterial, ListMaterial]] = [] self.fractalvolumes: List[FractalVolume] = [] # Sources and receivers contained inside this grid self.waveforms: List[Waveform] = [] self.voltagesources: List[VoltageSource] = [] self.hertziandipoles: List[HertzianDipole] = [] self.magneticdipoles: List[MagneticDipole] = [] self.transmissionlines: List[TransmissionLine] = [] self.rxs: List[Rx] = [] self.snapshots: List[Snapshot] = [] self.averagevolumeobjects = True @property def dx(self) -> float: return self.dl[0] @dx.setter def dx(self, value: float): self.dl[0] = value @property def dy(self) -> float: return self.dl[1] @dy.setter def dy(self, value: float): self.dl[1] = value @property def dz(self) -> float: return self.dl[2] @dz.setter def dz(self, value: float): self.dl[2] = value def build(self) -> None: """Build the grid.""" # Set default CFS parameter for PMLs if not user provided if not self.pmls["cfs"]: self.pmls["cfs"] = [CFS()] logger.info(print_pml_info(self)) if not all(value == 0 for value in self.pmls["thickness"].values()): self._build_pmls() for snapshot in self.snapshots: # TODO: Remove if implement parallel build snapshot.initialise_snapfields() if self.averagevolumeobjects: self._build_components() self._tm_grid_update() self._create_voltage_source_materials() self.initialise_field_arrays() self.initialise_std_update_coeff_arrays() if config.get_model_config().materials["maxpoles"] > 0: self.initialise_dispersive_arrays() self.initialise_dispersive_update_coeff_array() self._build_materials() def _build_pmls(self) -> None: """Construct and calculate material properties of the PMLs.""" pbar = tqdm( total=sum(1 for value in self.pmls["thickness"].values() if value > 0), desc=f"Building PML boundaries [{self.name}]", ncols=get_terminal_width() - 1, file=sys.stdout, disable=not config.sim_config.general["progressbars"], ) for pml_id, thickness in self.pmls["thickness"].items(): if thickness > 0: pml = self._construct_pml(pml_id, thickness) averageer, averagemr = self._calculate_average_pml_material_properties(pml) logger.debug( f"PML {pml.ID}: Average permittivity = {averageer}, Average permeability =" f" {averagemr}" ) pml.calculate_update_coeffs(averageer, averagemr) self.pmls["slabs"].append(pml) pbar.update() pbar.close() PmlType = TypeVar("PmlType", bound=PML) def _construct_pml(self, pml_ID: str, thickness: int, pml_type: type[PmlType] = PML) -> PmlType: """Build PML instance of the specified ID, thickness and type. Constructs a PML of the specified type and thickness. Properties of the PML are set based on the provided identifier. Args: pml_ID: Identifier of PML slab. thickness: Thickness of PML slab in cells. pml_type: PML class to construct. """ if pml_ID == "x0": pml = pml_type( self, ID=pml_ID, direction="xminus", xs=0, xf=thickness, ys=0, yf=self.ny, zs=0, zf=self.nz, ) elif pml_ID == "xmax": pml = pml_type( self, ID=pml_ID, direction="xplus", xs=self.nx - thickness, xf=self.nx, ys=0, yf=self.ny, zs=0, zf=self.nz, ) elif pml_ID == "y0": pml = pml_type( self, ID=pml_ID, direction="yminus", xs=0, xf=self.nx, ys=0, yf=thickness, zs=0, zf=self.nz, ) elif pml_ID == "ymax": pml = pml_type( self, ID=pml_ID, direction="yplus", xs=0, xf=self.nx, ys=self.ny - thickness, yf=self.ny, zs=0, zf=self.nz, ) elif pml_ID == "z0": pml = pml_type( self, ID=pml_ID, direction="zminus", xs=0, xf=self.nx, ys=0, yf=self.ny, zs=0, zf=thickness, ) elif pml_ID == "zmax": pml = pml_type( self, ID=pml_ID, direction="zplus", xs=0, xf=self.nx, ys=0, yf=self.ny, zs=self.nz - thickness, zf=self.nz, ) else: raise ValueError(f"Unknown PML ID '{pml_ID}'") return pml def _calculate_average_pml_material_properties(self, pml: PML) -> Tuple[float, float]: """Calculate average material properties for the provided PML. Args: pml: PML to calculate the properties of. Returns: averageer, averagemr: Average permittivity and permeability in the PML slab. """ # Arrays to hold values of permittivity and permeability (avoids accessing # Material class in Cython.) ers = np.zeros(len(self.materials)) mrs = np.zeros(len(self.materials)) for i, m in enumerate(self.materials): ers[i] = m.er mrs[i] = m.mr if pml.ID[0] == "x": n1 = self.ny n2 = self.nz solid = self.solid[pml.xs, :, :] elif pml.ID[0] == "y": n1 = self.nx n2 = self.nz solid = self.solid[:, pml.ys, :] elif pml.ID[0] == "z": n1 = self.nx n2 = self.ny solid = self.solid[:, :, pml.zs] else: raise ValueError(f"Unknown PML ID '{pml.ID}'") return pml_average_er_mr(n1, n2, config.get_model_config().ompthreads, solid, ers, mrs) def _build_components(self) -> None: """Build electric and magnetic components of the grid. Set the material properties (stored in the ID array) for every edge of every Yee cell. """ pbar = tqdm( total=2, desc=f"Building Yee cells [{self.name}]", ncols=get_terminal_width() - 1, file=sys.stdout, disable=not config.sim_config.general["progressbars"], ) build_electric_components(self.solid, self.rigidE, self.ID, self) pbar.update() build_magnetic_components(self.solid, self.rigidH, self.ID, self) pbar.update() pbar.close() def _tm_grid_update(self) -> None: """Add PEC boundaries to invariant if in 2D mode.""" if config.get_model_config().mode == "2D TMx": self.tmx() elif config.get_model_config().mode == "2D TMy": self.tmy() elif config.get_model_config().mode == "2D TMz": self.tmz() def _create_voltage_source_materials(self): """Create materials for voltage sources. Process any voltage sources (that have resistance) to create a new material at the source location. """ # Process any voltage sources (that have resistance) to create a new # material at the source location for voltagesource in self.voltagesources: voltagesource.create_material(self) def _build_materials(self) -> None: """Calculate properties of materials in the grid. Log a summary of the material properties. """ materialsdata = process_materials(self) # materialstable = SingleTable(materialsdata) materialstable = AsciiTable(materialsdata) materialstable.outer_border = False materialstable.justify_columns[0] = "right" logger.info("") logger.info(f"Materials [{self.name}]:\n{materialstable.table}\n") def _update_positions( self, items: Iterable[Union[Source, Rx]], step_size: npt.NDArray[np.int32], step_number: int ) -> None: """Update the grid positions of the provided items. Args: items: Sources and receivers to update. step_size: Number of grid cells to move the items each step. step_number: Number of steps to move the items by. Raises: ValueError: Raised if any of the items would be stepped outside of the grid. """ if step_size[0] != 0 or step_size[1] != 0 or step_size[2] != 0: for item in items: if step_number == 0: if ( item.xcoord + step_size[0] * config.sim_config.model_end < 0 or item.xcoord + step_size[0] * config.sim_config.model_end > self.nx or item.ycoord + step_size[1] * config.sim_config.model_end < 0 or item.ycoord + step_size[1] * config.sim_config.model_end > self.ny or item.zcoord + step_size[2] * config.sim_config.model_end < 0 or item.zcoord + step_size[2] * config.sim_config.model_end > self.nz ): raise ValueError item.coord = item.coordorigin + step_number * step_size def update_simple_source_positions( self, step_size: npt.NDArray[np.int32], step: int = 0 ) -> None: """Update the positions of sources in the grid. Move hertzian dipole and magnetic dipole sources. Transmission line sources and voltage sources will not be moved. Args: step_size: Number of grid cells to move the sources each step. step: Number of steps to move the sources by. Raises: ValueError: Raised if any of the sources would be stepped outside of the grid. """ try: self._update_positions( itertools.chain(self.hertziandipoles, self.magneticdipoles), step_size, step ) except ValueError as e: logger.exception("Source(s) will be stepped to a position outside the domain.") raise ValueError from e def update_receiver_positions(self, step_size: npt.NDArray[np.int32], step: int = 0) -> None: """Update the positions of receivers in the grid. Args: step_size: Number of grid cells to move the receivers each step. step: Number of steps to move the receivers by. Raises: ValueError: Raised if any of the receivers would be stepped outside of the grid. """ try: self._update_positions(self.rxs, step_size, step) except ValueError as e: logger.exception("Receiver(s) will be stepped to a position outside the domain.") raise ValueError from e IntPoint = Tuple[int, int, int] FloatPoint = Tuple[float, float, float] def within_bounds(self, p: IntPoint): """Check a point is within the grid. Args: p: Point to check. Raises: ValueError: Raised if the point is outside the grid. """ if p[0] < 0 or p[0] > self.nx: raise ValueError("x") if p[1] < 0 or p[1] > self.ny: raise ValueError("y") if p[2] < 0 or p[2] > self.nz: raise ValueError("z") def discretise_point(self, p: FloatPoint) -> IntPoint: """Calculate the nearest grid cell to the given point. Args: p: Point to discretise. Returns: x, y, z: Discretised point. """ x = round_value(float(p[0]) / self.dx) y = round_value(float(p[1]) / self.dy) z = round_value(float(p[2]) / self.dz) return (x, y, z) def round_to_grid(self, p: FloatPoint) -> FloatPoint: """Round the provided point to the nearest grid cell. Args: p: Point to round. Returns: p_r: Rounded point. """ p = self.discretise_point(p) p_r = (p[0] * self.dx, p[1] * self.dy, p[2] * self.dz) return p_r def within_pml(self, p: IntPoint) -> bool: """Check if the provided point is within a PML. Args: p: Point to check. Returns: within_pml: True if the point is within a PML. """ return ( p[0] < self.pmls["thickness"]["x0"] or p[0] > self.nx - self.pmls["thickness"]["xmax"] or p[1] < self.pmls["thickness"]["y0"] or p[1] > self.ny - self.pmls["thickness"]["ymax"] or p[2] < self.pmls["thickness"]["z0"] or p[2] > self.nz - self.pmls["thickness"]["zmax"] ) def get_waveform_by_id(self, waveform_id: str) -> Waveform: """Get waveform with the specified ID. Args: waveform_id: ID of the waveform. Returns: waveform: Requested waveform """ return next(waveform for waveform in self.waveforms if waveform.ID == waveform_id) def initialise_geometry_arrays(self): """Initialise arrays to store geometry properties. Initialise an array for volumetric material IDs (solid); boolean arrays for specifying whether materials can have dielectric smoothing (rigid); and an array for cell edge IDs (ID). Solid and ID arrays are initialised to free_space (one); rigid arrays to allow dielectric smoothing (zero). """ self.solid = np.ones((self.nx, self.ny, self.nz), dtype=np.uint32) self.rigidE = np.zeros((12, self.nx, self.ny, self.nz), dtype=np.int8) self.rigidH = np.zeros((6, self.nx, self.ny, self.nz), dtype=np.int8) self.ID = np.ones((6, self.nx + 1, self.ny + 1, self.nz + 1), dtype=np.uint32) def initialise_field_arrays(self): """Initialise arrays for the electric and magnetic field components.""" self.Ex = np.zeros( (self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"], ) self.Ey = np.zeros( (self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"], ) self.Ez = np.zeros( (self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"], ) self.Hx = np.zeros( (self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"], ) self.Hy = np.zeros( (self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"], ) self.Hz = np.zeros( (self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"], ) def initialise_std_update_coeff_arrays(self): """Initialise arrays for storing update coefficients.""" self.updatecoeffsE = np.zeros( (len(self.materials), 5), dtype=config.sim_config.dtypes["float_or_double"] ) self.updatecoeffsH = np.zeros( (len(self.materials), 5), dtype=config.sim_config.dtypes["float_or_double"] ) def initialise_dispersive_arrays(self): """Initialise field arrays when there are dispersive materials present.""" self.Tx = np.zeros( ( config.get_model_config().materials["maxpoles"], self.nx + 1, self.ny + 1, self.nz + 1, ), dtype=config.get_model_config().materials["dispersivedtype"], ) self.Ty = np.zeros( ( config.get_model_config().materials["maxpoles"], self.nx + 1, self.ny + 1, self.nz + 1, ), dtype=config.get_model_config().materials["dispersivedtype"], ) self.Tz = np.zeros( ( config.get_model_config().materials["maxpoles"], self.nx + 1, self.ny + 1, self.nz + 1, ), dtype=config.get_model_config().materials["dispersivedtype"], ) def initialise_dispersive_update_coeff_array(self): """Initialise array for storing update coefficients when there are dispersive materials present. """ self.updatecoeffsdispersive = np.zeros( (len(self.materials), 3 * config.get_model_config().materials["maxpoles"]), dtype=config.get_model_config().materials["dispersivedtype"], ) def reset_fields(self): """Clear arrays for field components and PMLs.""" # Clear arrays for field components self.initialise_field_arrays() if config.get_model_config().materials["maxpoles"] > 0: self.initialise_dispersive_arrays() # Clear arrays for fields in PML for pml in self.pmls["slabs"]: pml.initialise_field_arrays() def mem_est_basic(self): """Estimates the amount of memory (RAM) required for grid arrays. Returns: mem_use: int of memory (bytes). """ solidarray = self.nx * self.ny * self.nz * np.dtype(np.uint32).itemsize # 12 x rigidE array components + 6 x rigidH array components rigidarrays = (12 + 6) * self.nx * self.ny * self.nz * np.dtype(np.int8).itemsize # 6 x field arrays + 6 x ID arrays fieldarrays = ( (6 + 6) * (self.nx + 1) * (self.ny + 1) * (self.nz + 1) * np.dtype(config.sim_config.dtypes["float_or_double"]).itemsize ) # PML arrays pmlarrays = 0 for k, v in self.pmls["thickness"].items(): if v > 0: if "x" in k: pmlarrays += (v + 1) * self.ny * (self.nz + 1) pmlarrays += (v + 1) * (self.ny + 1) * self.nz pmlarrays += v * self.ny * (self.nz + 1) pmlarrays += v * (self.ny + 1) * self.nz elif "y" in k: pmlarrays += self.nx * (v + 1) * (self.nz + 1) pmlarrays += (self.nx + 1) * (v + 1) * self.nz pmlarrays += (self.nx + 1) * v * self.nz pmlarrays += self.nx * v * (self.nz + 1) elif "z" in k: pmlarrays += self.nx * (self.ny + 1) * (v + 1) pmlarrays += (self.nx + 1) * self.ny * (v + 1) pmlarrays += (self.nx + 1) * self.ny * v pmlarrays += self.nx * (self.ny + 1) * v mem_use = int(fieldarrays + solidarray + rigidarrays + pmlarrays) return mem_use def mem_est_dispersive(self): """Estimates the amount of memory (RAM) required for dispersive grid arrays. Returns: mem_use: int of memory (bytes). """ mem_use = int( 3 * config.get_model_config().materials["maxpoles"] * (self.nx + 1) * (self.ny + 1) * (self.nz + 1) * np.dtype(config.get_model_config().materials["dispersivedtype"]).itemsize ) return mem_use def mem_est_fractals(self): """Calculate the memory required to build fractal objects. Estimates the amount of memory (RAM) required to build any objects which use the FractalVolume/FractalSurface classes. Returns: mem_use: int of memory (bytes). """ mem_use = 0 for vol in self.fractalvolumes: mem_use += vol.nx * vol.ny * vol.nz * vol.dtype.itemsize for surface in vol.fractalsurfaces: surfacedims = surface.get_surface_dims() mem_use += surfacedims[0] * surfacedims[1] * surface.dtype.itemsize return mem_use def tmx(self): """Add PEC boundaries to invariant direction in 2D TMx mode. N.B. 2D modes are a single cell slice of 3D grid. """ # Ey & Ez components self.ID[1, 0, :, :] = 0 self.ID[1, 1, :, :] = 0 self.ID[2, 0, :, :] = 0 self.ID[2, 1, :, :] = 0 def tmy(self): """Add PEC boundaries to invariant direction in 2D TMy mode. N.B. 2D modes are a single cell slice of 3D grid. """ # Ex & Ez components self.ID[0, :, 0, :] = 0 self.ID[0, :, 1, :] = 0 self.ID[2, :, 0, :] = 0 self.ID[2, :, 1, :] = 0 def tmz(self): """Add PEC boundaries to invariant direction in 2D TMz mode. N.B. 2D modes are a single cell slice of 3D grid. """ # Ex & Ey components self.ID[0, :, :, 0] = 0 self.ID[0, :, :, 1] = 0 self.ID[1, :, :, 0] = 0 self.ID[1, :, :, 1] = 0 def calculate_dt(self): """Calculate time step at the CFL limit.""" if config.get_model_config().mode == "2D TMx": self.dt = 1 / ( config.sim_config.em_consts["c"] * np.sqrt((1 / self.dy**2) + (1 / self.dz**2)) ) elif config.get_model_config().mode == "2D TMy": self.dt = 1 / ( config.sim_config.em_consts["c"] * np.sqrt((1 / self.dx**2) + (1 / self.dz**2)) ) elif config.get_model_config().mode == "2D TMz": self.dt = 1 / ( config.sim_config.em_consts["c"] * np.sqrt((1 / self.dx**2) + (1 / self.dy**2)) ) else: self.dt = 1 / ( config.sim_config.em_consts["c"] * np.sqrt((1 / self.dx**2) + (1 / self.dy**2) + (1 / self.dz**2)) ) # Round down time step to nearest float with precision one less than # hardware maximum. Avoids inadvertently exceeding the CFL due to # binary representation of floating point number. self.dt = round_value(self.dt, decimalplaces=decimal.getcontext().prec - 1) def calculate_Ix(self, x: int, y: int, z: int) -> float: """Calculates the x-component of current at a grid position. Args: x: x coordinate of position in grid y: y coordinate of position in grid z: z coordinate of position in grid """ if y == 0 or z == 0: Ix = 0 else: Ix = self.dy * (self.Hy[x, y, z - 1] - self.Hy[x, y, z]) + self.dz * ( self.Hz[x, y, z] - self.Hz[x, y - 1, z] ) return Ix def calculate_Iy(self, x: int, y: int, z: int) -> float: """Calculates the y-component of current at a grid position. Args: x: x coordinate of position in grid y: y coordinate of position in grid z: z coordinate of position in grid """ if x == 0 or z == 0: Iy = 0 else: Iy = self.dx * (self.Hx[x, y, z] - self.Hx[x, y, z - 1]) + self.dz * ( self.Hz[x - 1, y, z] - self.Hz[x, y, z] ) return Iy def calculate_Iz(self, x: int, y: int, z: int) -> float: """Calculates the y-component of current at a grid position. Args: x: x coordinate of position in grid y: y coordinate of position in grid z: z coordinate of position in grid """ if x == 0 or y == 0: Iz = 0 else: Iz = self.dx * (self.Hx[x, y - 1, z] - self.Hx[x, y, z]) + self.dy * ( self.Hy[x, y, z] - self.Hy[x - 1, y, z] ) return Iz def dispersion_analysis(self, iterations: int): """Check to see if numerical dispersion might be a problem. Raises: ValueError: Raised if a problem is encountered. """ results = self._dispersion_analysis(iterations) if results["error"]: logger.warning( f"Numerical dispersion analysis [{self.name}] not carried out as {results['error']}" ) elif results["N"] < config.get_model_config().numdispersion["mingridsampling"]: logger.exception( f"\nNon-physical wave propagation in [{self.name}] " f"detected. Material '{results['material'].ID}' " f"has wavelength sampled by {results['N']} cells, " "less than required minimum for physical wave " "propagation. Maximum significant frequency " f"estimated as {results['maxfreq']:g}Hz" ) raise ValueError elif ( results["deltavp"] and np.abs(results["deltavp"]) > config.get_model_config().numdispersion["maxnumericaldisp"] ): logger.warning( f"[{self.name}] has potentially significant " "numerical dispersion. Estimated largest physical " f"phase-velocity error is {results['deltavp']:.2f}% " f"in material '{results['material'].ID}' whose " f"wavelength sampled by {results['N']} cells. " "Maximum significant frequency estimated as " f"{results['maxfreq']:g}Hz\n" ) elif results["deltavp"]: logger.info( f"Numerical dispersion analysis [{self.name}]: " "estimated largest physical phase-velocity error is " f"{results['deltavp']:.2f}% in material '{results['material'].ID}' " f"whose wavelength sampled by {results['N']} cells. " "Maximum significant frequency estimated as " f"{results['maxfreq']:g}Hz\n" ) def _dispersion_analysis(self, iterations: int) -> dict[str, Any]: """Run dispersion analysis. Analysis of numerical dispersion (Taflove et al, 2005, p112) - worse case of maximum frequency and minimum wavelength. Args: iterations: Number of iterations the model will run for. Returns: results: dict of results from dispersion analysis. """ # deltavp: physical phase velocity error (percentage) # N: grid sampling density # material: material with maximum permittivity # maxfreq: maximum significant frequency # error: error message results = {"deltavp": None, "N": None, "material": None, "maxfreq": [], "error": ""} # Find maximum significant frequency if self.waveforms: for waveform in self.waveforms: if waveform.type in ["sine", "contsine"]: results["maxfreq"].append(4 * waveform.freq) elif waveform.type == "impulse": results["error"] = "impulse waveform used." elif waveform.type == "user": results["error"] = "user waveform detected." else: # Time to analyse waveform - 4*pulse_width as using entire # time window can result in demanding FFT waveform.calculate_coefficients() # TODO: Check max_iterations should be calculated (original code didn't go on to use it) max_iterations = round_value(4 * waveform.chi / self.dt) iterations = min(iterations, max_iterations) waveformvalues = np.zeros(iterations) for iteration in range(iterations): waveformvalues[iteration] = waveform.calculate_value( iteration * self.dt, self.dt ) # Ensure source waveform is not being overly truncated before attempting any FFT if np.abs(waveformvalues[-1]) < np.abs(np.amax(waveformvalues)) / 100: # FFT freqs, power = fft_power(waveformvalues, self.dt) # Get frequency for max power freqmaxpower = np.where(np.isclose(power, 0))[0][0] # Set maximum frequency to a threshold drop from maximum power, ignoring DC value try: freqthres = ( np.where( power[freqmaxpower:] < -config.get_model_config().numdispersion["highestfreqthres"] )[0][0] + freqmaxpower ) results["maxfreq"].append(freqs[freqthres]) except ValueError: results["error"] = ( "unable to calculate maximum power " + "from waveform, most likely due to " + "undersampling." ) # Ignore case where someone is using a waveform with zero amplitude, i.e. on a receiver elif waveform.amp == 0: pass # If waveform is truncated don't do any further analysis else: results["error"] = ( "waveform does not fit within specified " + "time window and is therefore being truncated." ) else: results["error"] = "no waveform detected." if results["maxfreq"]: results["maxfreq"] = max(results["maxfreq"]) # Find minimum wavelength (material with maximum permittivity) maxer = 0 matmaxer = "" for x in self.materials: if x.se != float("inf"): er = x.er # If there are dispersive materials calculate the complex # relative permittivity at maximum frequency and take the real part if x.__class__.__name__ == "DispersiveMaterial": er = x.calculate_er(results["maxfreq"]) er = er.real if er > maxer: maxer = er matmaxer = x.ID results["material"] = next(x for x in self.materials if x.ID == matmaxer) # Minimum velocity minvelocity = config.c / np.sqrt(maxer) # Minimum wavelength minwavelength = minvelocity / results["maxfreq"] # Maximum spatial step if "3D" in config.get_model_config().mode: delta = max(self.dx, self.dy, self.dz) elif "2D" in config.get_model_config().mode: if self.nx == 1: delta = max(self.dy, self.dz) elif self.ny == 1: delta = max(self.dx, self.dz) elif self.nz == 1: delta = max(self.dx, self.dy) # Courant stability factor S = (config.c * self.dt) / delta # Grid sampling density results["N"] = minwavelength / delta # Check grid sampling will result in physical wave propagation if ( int(np.floor(results["N"])) >= config.get_model_config().numdispersion["mingridsampling"] ): # Numerical phase velocity vp = np.pi / ( results["N"] * np.arcsin((1 / S) * np.sin((np.pi * S) / results["N"])) ) # Physical phase velocity error (percentage) results["deltavp"] = (((vp * config.c) - config.c) / config.c) * 100 # Store rounded down value of grid sampling density results["N"] = int(np.floor(results["N"])) return results