import sys, os import h5py import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from tools.plot_fields import plot_Ascan from tests.analytical_solutions import hertzian_dipole_fs """Compare field outputs Usage: cd gprMax python -m tests.test_compare_analytical path_to_model_output """ modelfile = sys.argv[1] path = '/rxs/rx1/' # Key refers to subplot location fields = {0: 'Ex', 1: 'Ey', 2: 'Ez', 3: 'Hx', 4: 'Hy', 5: 'Hz'} plotorder = {0: 0, 1: 3, 2: 1, 3: 4, 4: 2, 5: 5} # Model results f = h5py.File(modelfile, 'r') # Get model/file attributes floattype = f[path + 'Ex'].dtype iterations = f.attrs['Iterations'] dt = f.attrs['dt'] dxdydz = f.attrs['dx, dy, dz'] model = np.zeros((iterations, 6), dtype=floattype) time = np.arange(0, dt * iterations, dt) / 1e-9 rxpos = f[path + 'Position'] txpos = f['/txs/tx1/Position'] rxposrelative = ((rxpos[0] - txpos[0]), (rxpos[1] - txpos[1]), (rxpos[2] - txpos[2])) # Read fields for ID, name in fields.items(): model[:,ID] = f[path + str(name)][:] f.close() # Analytical solution of a dipole in free space analytical = hertzian_dipole_fs(iterations * dt, dt, dxdydz, rxposrelative) # Differences threshold = 1e-4 # Threshold, below which ignore differences diffs = np.zeros((iterations, 6), dtype=floattype) for ID, name in fields.items(): max = np.amax(np.abs(analytical[:,ID])) if max < threshold: diffs[:,ID] = 0 diffsum = 0 print('Detected differences of less than {} when comparing {} field component, therefore set as zero.'.format(threshold, fields[ID])) else: diffs[:,ID] = (np.abs(analytical[:,ID] - model[:,ID]) / max) * 100 diffsum = (np.sum(np.abs(analytical[:,ID] - model[:,ID])) / np.sum(np.abs(analytical[:,ID]))) * 100 print('Total differences in field component {}: {:.1f}%'.format(name, diffsum)) # Plot model fig1, plt1 = plot_Ascan(modelfile + ' versus analytical solution', time, model[:,0], model[:,1], model[:,2], model[:,3], model[:,4], model[:,5]) # Add analytical solution and set legend for index, ax in enumerate(fig1.axes): if index in [0, 2, 4]: ax.plot(time, analytical[:,plotorder[index]], 'r', label='analytical', lw=2, ls='--') else: ax.plot(time, analytical[:,plotorder[index]], label='analytical', lw=2, ls='--') ax.set_xlim(0, time[-1]) handles, existlabels = ax.get_legend_handles_labels() ax.legend(handles, ['Model', 'Analytical']) # Plots of differences fig2, plt2 = plot_Ascan('Deltas: ' + modelfile + ' versus analytical solution', time, diffs[:,0], diffs[:,1], diffs[:,2], diffs[:,3], diffs[:,4], diffs[:,5]) [ax.set_xlim(0, time[-1]) for ax in fig2.axes] [ax.set_ylim(0, np.ceil(np.amax(np.abs(diffs)))) for ax in fig2.axes] ylabels = ['$E_x$', '$H_x$', '$E_y$', '$H_y$', '$E_z$', '$H_z$'] ylabels = [ylabel + ', percentage difference [%]' for ylabel in ylabels] [ax.set_ylabel(ylabels[index]) for index, ax in enumerate(fig2.axes)] # Show/print plots savename = os.path.abspath(os.path.dirname(modelfile)) + os.sep + os.path.splitext(os.path.split(modelfile)[1])[0] + '_vs_analytical' #fig1.savefig(savename + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1) #fig2.savefig(savename + '_diffs.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1) plt1.show() plt2.show()