# Copyright (C) 2015-2023: The University of Edinburgh # Authors: Craig Warren and Antonis Giannopoulos # # This file is part of gprMax. # # gprMax is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # gprMax is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with gprMax. If not, see . import argparse import itertools import os import sys import h5py import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import numpy as np from gprMax._version import __version__ from gprMax.utilities import get_host_info from gprMax.utilities import human_size """Plots execution times and speedup factors from benchmarking models run with different numbers of CPU (OpenMP) threads. Can also benchmark GPU(s) if required. Results are read from a NumPy archive.""" # Parse command line arguments parser = argparse.ArgumentParser(description='Plots execution times and speedup factors from benchmarking models run with different numbers of CPU (OpenMP) threads. Can also benchmark GPU(s) if required. Results are read from a NumPy archive.', usage='cd gprMax; python -m tests.benchmarking.plot_benchmark numpyfile') parser.add_argument('baseresult', help='name of NumPy archive file including path') parser.add_argument('--otherresults', default=None, help='list of NumPy archives file including path', nargs='+') args = parser.parse_args() # Load base result baseresult = dict(np.load(args.baseresult)) # Get machine/CPU/OS details hostinfo = get_host_info() try: machineIDlong = str(baseresult['machineID']) # machineIDlong = 'Dell PowerEdge R630; Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz; Linux (3.10.0-327.18.2.el7.x86_64)' # Use to manually describe machine machineID = machineIDlong.split(';')[0] cpuID = machineIDlong.split(';')[1] cpuID = cpuID.split('GHz')[0].split('x')[1][1::] + 'GHz' except KeyError: hyperthreading = ', {} cores with Hyper-Threading'.format(hostinfo['logicalcores']) if hostinfo['hyperthreading'] else '' machineIDlong = '{}; {} x {} ({} cores{}); {} RAM; {}'.format(hostinfo['machineID'], hostinfo['sockets'], hostinfo['cpuID'], hostinfo['physicalcores'], hyperthreading, human_size(hostinfo['ram'], a_kilobyte_is_1024_bytes=True), hostinfo['osversion']) print('Host: {}'.format(machineIDlong)) # Base result - general info print('Model: {}'.format(args.baseresult)) cells = np.array([baseresult['numcells'][0]]) # Length of cubic model side for cells per second metric baseplotlabel = os.path.splitext(os.path.split(args.baseresult)[1])[0] + '.in' # Base result - CPU threads and times info from Numpy archive if baseresult['cputhreads'].size != 0: for i in range(len(baseresult['cputhreads'])): print('{} CPU (OpenMP) thread(s): {:g} s'.format(baseresult['cputhreads'][i], baseresult['cputimes'][i])) cpucellspersec = np.array([(baseresult['numcells'][0] * baseresult['numcells'][1] * baseresult['numcells'][2] * baseresult['iterations']) / baseresult['cputimes'][0]]) # Base result - GPU time info gpuIDs = baseresult['gpuIDs'].tolist() if gpuIDs: gpucellspersec = np.zeros((len(gpuIDs), 1)) for i in range(len(gpuIDs)): print('NVIDIA {}: {:g} s'.format(gpuIDs[i], baseresult['gputimes'][i])) gpucellspersec[i] = (baseresult['numcells'][0] * baseresult['numcells'][1] * baseresult['numcells'][2] * baseresult['iterations']) / baseresult['gputimes'][i] # Load any other results and info otherresults = [] otherplotlabels = [] if args.otherresults is not None: for i, result in enumerate(args.otherresults): otherresults.append(dict(np.load(result))) print('\nModel: {}'.format(result)) cells = np.append(cells, otherresults[i]['numcells'][0]) # Length of cubic model side for cells per second metric otherplotlabels.append(os.path.splitext(os.path.split(result)[1])[0] + '.in') # CPU if otherresults[i]['cputhreads'].size != 0: for thread in range(len(otherresults[i]['cputhreads'])): print('{} CPU (OpenMP) thread(s): {:g} s'.format(otherresults[i]['cputhreads'][thread], otherresults[i]['cputimes'][thread])) cpucellspersec = np.append(cpucellspersec, (otherresults[i]['numcells'][0] * otherresults[i]['numcells'][1] * otherresults[i]['numcells'][2] * otherresults[i]['iterations']) / otherresults[i]['cputimes'][0]) # GPU othergpuIDs = otherresults[i]['gpuIDs'].tolist() if othergpuIDs: # Array for cells per second metric tmp = np.zeros((len(gpuIDs), len(args.otherresults) + 1)) tmp[:gpucellspersec.shape[0],:gpucellspersec.shape[1]] = gpucellspersec gpucellspersec = tmp for j in range(len(othergpuIDs)): print('NVIDIA {}: {:g} s'.format(othergpuIDs[j], otherresults[i]['gputimes'][j])) gpucellspersec[j,i+1] = (otherresults[i]['numcells'][0] * otherresults[i]['numcells'][1] * otherresults[i]['numcells'][2] * otherresults[i]['iterations']) / otherresults[i]['gputimes'][j] # Get gprMax version try: version = str(baseresult['version']) except KeyError: version = __version__ # Create/setup plot figure #colors = ['#E60D30', '#5CB7C6', '#A21797', '#A3B347'] # Plot colours from http://tools.medialab.sciences-po.fr/iwanthue/index.php colorIDs = ['#015dbb', '#c23100', '#00a15a', '#c84cd0', '#ff9aa0'] colors = itertools.cycle(colorIDs) lines = itertools.cycle(('--', ':', '-.', '-')) markers = ['o', 'd', '^', 's', '*'] fig, ax = plt.subplots(num=machineID, figsize=(30, 10), facecolor='w', edgecolor='w') fig.suptitle(machineIDlong + '\ngprMax v' + version) gs = gridspec.GridSpec(1, 3, hspace=0.5) plotcount = 0 ########################################### # Subplot of CPU (OpenMP) threads vs time # ########################################### if baseresult['cputhreads'].size != 0: ax = plt.subplot(gs[0, plotcount]) ax.plot(baseresult['cputhreads'], baseresult['cputimes'], color=next(colors), marker=markers[0], markeredgecolor='none', ms=8, lw=2, label=baseplotlabel) if args.otherresults is not None: for i, result in enumerate(otherresults): ax.plot(result['cputhreads'], result['cputimes'], color=next(colors), marker=markers[0], markeredgecolor='none', ms=8, lw=2, ls=next(lines), label=otherplotlabels[i]) ax.set_xlabel('Number of CPU (OpenMP) threads') ax.set_ylabel('Time [s]') ax.grid() legend = ax.legend(loc=1) frame = legend.get_frame() frame.set_edgecolor('white') ax.set_xlim([0, baseresult['cputhreads'][0] * 1.1]) ax.set_xticks(np.append(baseresult['cputhreads'], 0)) ax.set_ylim(0, top=ax.get_ylim()[1] * 1.1) plotcount += 1 ###################################################### # Subplot of CPU (OpenMP) threads vs speed-up factor # ###################################################### colors = itertools.cycle(colorIDs) # Reset color iterator if baseresult['cputhreads'].size != 0: ax = plt.subplot(gs[0, plotcount]) ax.plot(baseresult['cputhreads'], baseresult['cputimes'][-1] / baseresult['cputimes'], color=next(colors), marker=markers[0], markeredgecolor='none', ms=8, lw=2, label=baseplotlabel) if args.otherresults is not None: for i, result in enumerate(otherresults): ax.plot(result['cputhreads'], result['cputimes'][-1] / result['cputimes'], color=next(colors), marker=markers[0], markeredgecolor='none', ms=8, lw=2, ls=next(lines), label=otherplotlabels[i]) ax.set_xlabel('Number of CPU (OpenMP) threads') ax.set_ylabel('Speed-up factor') ax.grid() legend = ax.legend(loc=2) frame = legend.get_frame() frame.set_edgecolor('white') ax.set_xlim([0, baseresult['cputhreads'][0] * 1.1]) ax.set_xticks(np.append(baseresult['cputhreads'], 0)) ax.set_ylim(bottom=1, top=ax.get_ylim()[1] * 1.1) plotcount += 1 ########################################### # Subplot of simulation size vs cells/sec # ########################################### def autolabel(rects): """Attach a text label above each bar on a matplotlib bar chart displaying its height. Args: rects: Handle to bar chart """ for rect in rects: height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/2, height, '%d' % int(height), ha='center', va='bottom', fontsize=10, rotation=90) colors = itertools.cycle(colorIDs) # Reset color iterator ax = plt.subplot(gs[0, plotcount]) barwidth = 8 # the width of the bars if baseresult['cputhreads'].size != 0: cpu = ax.bar(cells - (1/2) * barwidth, cpucellspersec / 1e6, barwidth, color=next(colors), edgecolor='none', label=cpuID) autolabel(cpu) if gpuIDs: positions = np.arange(-gpucellspersec.shape[0] / 2, gpucellspersec.shape[0] / 2, 1) for i in range(gpucellspersec.shape[0]): gpu = ax.bar(cells + positions[i] * barwidth, gpucellspersec[i,:] / 1e6, barwidth, color=next(colors), edgecolor='none', label='NVIDIA ' + gpuIDs[i]) autolabel(gpu) ax.set_xlabel('Side length of cubic domain [cells]') ax.set_ylabel('Performance [Mcells/s]') ax.grid() legend = ax.legend(loc=2) frame = legend.get_frame() frame.set_edgecolor('white') ax.set_xticks(cells) ax.set_xticklabels(cells) ax.set_xlim([0, cells[-1] * 1.1]) ax.set_ylim(bottom=0, top=ax.get_ylim()[1] * 1.1) ########################## # Save a png of the plot # ########################## fig.savefig(os.path.join(os.path.dirname(args.baseresult), machineID.replace(' ', '_') + '.png'), dpi=150, format='png', bbox_inches='tight', pad_inches=0.1) #fig.savefig(os.path.join(os.path.dirname(args.baseresult), machineID.replace(' ', '_') + '.pdf'), dpi='none', format='pdf', bbox_inches='tight', pad_inches=0.1) plt.show()