# Copyright (C) 2015-2023: The University of Edinburgh # Authors: Craig Warren and Antonis Giannopoulos # # This file is part of gprMax. # # gprMax is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # gprMax is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with gprMax. If not, see . import numpy as np cimport numpy as np from cython.parallel import prange from gprMax.constants cimport floattype_t from gprMax.constants cimport complextype_t ############################################### # Electric field updates - standard materials # ############################################### cpdef void update_electric( int nx, int ny, int nz, int nthreads, floattype_t[:, ::1] updatecoeffsE, np.uint32_t[:, :, :, ::1] ID, floattype_t[:, :, ::1] Ex, floattype_t[:, :, ::1] Ey, floattype_t[:, :, ::1] Ez, floattype_t[:, :, ::1] Hx, floattype_t[:, :, ::1] Hy, floattype_t[:, :, ::1] Hz ): """This function updates the electric field components. Args: nx, ny, nz (int): Grid size in cells nthreads (int): Number of threads to use updatecoeffs, ID, E, H (memoryviews): Access to update coeffients, ID and field component arrays """ cdef Py_ssize_t i, j, k cdef int materialEx, materialEy, materialEz # 2D - Ex component if nx == 1: for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(1, ny): for k in range(1, nz): materialEx = ID[0, i, j, k] Ex[i, j, k] = updatecoeffsE[materialEx, 0] * Ex[i, j, k] + updatecoeffsE[materialEx, 2] * (Hz[i, j, k] - Hz[i, j - 1, k]) - updatecoeffsE[materialEx, 3] * (Hy[i, j, k] - Hy[i, j, k - 1]) # 2D - Ey component elif ny == 1: for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(0, ny): for k in range(1, nz): materialEy = ID[1, i, j, k] Ey[i, j, k] = updatecoeffsE[materialEy, 0] * Ey[i, j, k] + updatecoeffsE[materialEy, 3] * (Hx[i, j, k] - Hx[i, j, k - 1]) - updatecoeffsE[materialEy, 1] * (Hz[i, j, k] - Hz[i - 1, j, k]) # 2D - Ez component elif nz == 1: for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(1, ny): for k in range(0, nz): materialEz = ID[2, i, j, k] Ez[i, j, k] = updatecoeffsE[materialEz, 0] * Ez[i, j, k] + updatecoeffsE[materialEz, 1] * (Hy[i, j, k] - Hy[i - 1, j, k]) - updatecoeffsE[materialEz, 2] * (Hx[i, j, k] - Hx[i, j - 1, k]) # 3D else: for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(1, ny): for k in range(1, nz): materialEx = ID[0, i, j, k] materialEy = ID[1, i, j, k] materialEz = ID[2, i, j, k] Ex[i, j, k] = updatecoeffsE[materialEx, 0] * Ex[i, j, k] + updatecoeffsE[materialEx, 2] * (Hz[i, j, k] - Hz[i, j - 1, k]) - updatecoeffsE[materialEx, 3] * (Hy[i, j, k] - Hy[i, j, k - 1]) Ey[i, j, k] = updatecoeffsE[materialEy, 0] * Ey[i, j, k] + updatecoeffsE[materialEy, 3] * (Hx[i, j, k] - Hx[i, j, k - 1]) - updatecoeffsE[materialEy, 1] * (Hz[i, j, k] - Hz[i - 1, j, k]) Ez[i, j, k] = updatecoeffsE[materialEz, 0] * Ez[i, j, k] + updatecoeffsE[materialEz, 1] * (Hy[i, j, k] - Hy[i - 1, j, k]) - updatecoeffsE[materialEz, 2] * (Hx[i, j, k] - Hx[i, j - 1, k]) # Ex components at i = 0 for j in prange(1, ny, nogil=True, schedule='static', num_threads=nthreads): for k in range(1, nz): materialEx = ID[0, 0, j, k] Ex[0, j, k] = updatecoeffsE[materialEx, 0] * Ex[0, j, k] + updatecoeffsE[materialEx, 2] * (Hz[0, j, k] - Hz[0, j - 1, k]) - updatecoeffsE[materialEx, 3] * (Hy[0, j, k] - Hy[0, j, k - 1]) # Ey components at j = 0 for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads): for k in range(1, nz): materialEy = ID[1, i, 0, k] Ey[i, 0, k] = updatecoeffsE[materialEy, 0] * Ey[i, 0, k] + updatecoeffsE[materialEy, 3] * (Hx[i, 0, k] - Hx[i, 0, k - 1]) - updatecoeffsE[materialEy, 1] * (Hz[i, 0, k] - Hz[i - 1, 0, k]) # Ez components at k = 0 for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(1, ny): materialEz = ID[2, i, j, 0] Ez[i, j, 0] = updatecoeffsE[materialEz, 0] * Ez[i, j, 0] + updatecoeffsE[materialEz, 1] * (Hy[i, j, 0] - Hy[i - 1, j, 0]) - updatecoeffsE[materialEz, 2] * (Hx[i, j, 0] - Hx[i, j - 1, 0]) ################################################# # Electric field updates - dispersive materials # ################################################# cpdef void update_electric_dispersive_multipole_A( int nx, int ny, int nz, int nthreads, int maxpoles, floattype_t[:, ::1] updatecoeffsE, complextype_t[:, ::1] updatecoeffsdispersive, np.uint32_t[:, :, :, ::1] ID, complextype_t[:, :, :, ::1] Tx, complextype_t[:, :, :, ::1] Ty, complextype_t[:, :, :, ::1] Tz, floattype_t[:, :, ::1] Ex, floattype_t[:, :, ::1] Ey, floattype_t[:, :, ::1] Ez, floattype_t[:, :, ::1] Hx, floattype_t[:, :, ::1] Hy, floattype_t[:, :, ::1] Hz ): """This function updates the electric field components when dispersive materials (with multiple poles) are present. Args: nx, ny, nz (int): Grid size in cells maxpoles (int): Maximum number of poles nthreads (int): Number of threads to use updatecoeffs, T, ID, E, H (memoryviews): Access to update coeffients, temporary, ID and field component arrays """ cdef Py_ssize_t i, j, k, pole cdef int material cdef float phi = 0 # Ex component if ny != 1 or nz != 1: for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(1, ny): for k in range(1, nz): material = ID[0, i, j, k] phi = 0 for pole in range(maxpoles): phi = phi + updatecoeffsdispersive[material, pole * 3].real * Tx[pole, i, j, k].real Tx[pole, i, j, k] = updatecoeffsdispersive[material, 1 + (pole * 3)] * Tx[pole, i, j, k] + updatecoeffsdispersive[material, 2 + (pole * 3)] * Ex[i, j, k] Ex[i, j, k] = updatecoeffsE[material, 0] * Ex[i, j, k] + updatecoeffsE[material, 2] * (Hz[i, j, k] - Hz[i, j - 1, k]) - updatecoeffsE[material, 3] * (Hy[i, j, k] - Hy[i, j, k - 1]) - updatecoeffsE[material, 4] * phi # Ey component if nx != 1 or nz != 1: for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(0, ny): for k in range(1, nz): material = ID[1, i, j, k] phi = 0 for pole in range(maxpoles): phi = phi + updatecoeffsdispersive[material, pole * 3].real * Ty[pole, i, j, k].real Ty[pole, i, j, k] = updatecoeffsdispersive[material, 1 + (pole * 3)] * Ty[pole, i, j, k] + updatecoeffsdispersive[material, 2 + (pole * 3)] * Ey[i, j, k] Ey[i, j, k] = updatecoeffsE[material, 0] * Ey[i, j, k] + updatecoeffsE[material, 3] * (Hx[i, j, k] - Hx[i, j, k - 1]) - updatecoeffsE[material, 1] * (Hz[i, j, k] - Hz[i - 1, j, k]) - updatecoeffsE[material, 4] * phi # Ez component if nx != 1 or ny != 1: for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(1, ny): for k in range(0, nz): material = ID[2, i, j, k] phi = 0 for pole in range(maxpoles): phi = phi + updatecoeffsdispersive[material, pole * 3].real * Tz[pole, i, j, k].real Tz[pole, i, j, k] = updatecoeffsdispersive[material, 1 + (pole * 3)] * Tz[pole, i, j, k] + updatecoeffsdispersive[material, 2 + (pole * 3)] * Ez[i, j, k] Ez[i, j, k] = updatecoeffsE[material, 0] * Ez[i, j, k] + updatecoeffsE[material, 1] * (Hy[i, j, k] - Hy[i - 1, j, k]) - updatecoeffsE[material, 2] * (Hx[i, j, k] - Hx[i, j - 1, k]) - updatecoeffsE[material, 4] * phi cpdef void update_electric_dispersive_multipole_B( int nx, int ny, int nz, int nthreads, int maxpoles, complextype_t[:, ::1] updatecoeffsdispersive, np.uint32_t[:, :, :, ::1] ID, complextype_t[:, :, :, ::1] Tx, complextype_t[:, :, :, ::1] Ty, complextype_t[:, :, :, ::1] Tz, floattype_t[:, :, ::1] Ex, floattype_t[:, :, ::1] Ey, floattype_t[:, :, ::1] Ez ): """This function updates a temporary dispersive material array when disperisive materials (with multiple poles) are present. Args: nx, ny, nz (int): Grid size in cells maxpoles (int): Maximum number of poles nthreads (int): Number of threads to use updatecoeffs, T, ID, E (memoryviews): Access to update coeffients, temporary, ID and field component arrays """ cdef Py_ssize_t i, j, k, pole cdef int material # Ex component if ny != 1 or nz != 1: for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(1, ny): for k in range(1, nz): material = ID[0, i, j, k] for pole in range(maxpoles): Tx[pole, i, j, k] = Tx[pole, i, j, k] - updatecoeffsdispersive[material, 2 + (pole * 3)] * Ex[i, j, k] # Ey component if nx != 1 or nz != 1: for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(0, ny): for k in range(1, nz): material = ID[1, i, j, k] for pole in range(maxpoles): Ty[pole, i, j, k] = Ty[pole, i, j, k] - updatecoeffsdispersive[material, 2 + (pole * 3)] * Ey[i, j, k] # Ez component if nx != 1 or ny != 1: for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(1, ny): for k in range(0, nz): material = ID[2, i, j, k] for pole in range(maxpoles): Tz[pole, i, j, k] = Tz[pole, i, j, k] - updatecoeffsdispersive[material, 2 + (pole * 3)] * Ez[i, j, k] cpdef void update_electric_dispersive_1pole_A( int nx, int ny, int nz, int nthreads, floattype_t[:, ::1] updatecoeffsE, complextype_t[:, ::1] updatecoeffsdispersive, np.uint32_t[:, :, :, ::1] ID, complextype_t[:, :, :, ::1] Tx, complextype_t[:, :, :, ::1] Ty, complextype_t[:, :, :, ::1] Tz, floattype_t[:, :, ::1] Ex, floattype_t[:, :, ::1] Ey, floattype_t[:, :, ::1] Ez, floattype_t[:, :, ::1] Hx, floattype_t[:, :, ::1] Hy, floattype_t[:, :, ::1] Hz ): """This function updates the electric field components when dispersive materials (with 1 pole) are present. Args: nx, ny, nz (int): Grid size in cells nthreads (int): Number of threads to use updatecoeffs, T, ID, E, H (memoryviews): Access to update coeffients, temporary, ID and field component arrays """ cdef Py_ssize_t i, j, k cdef int material cdef float phi = 0 # Ex component if ny != 1 or nz != 1: for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(1, ny): for k in range(1, nz): material = ID[0, i, j, k] phi = updatecoeffsdispersive[material, 0].real * Tx[0, i, j, k].real Tx[0, i, j, k] = updatecoeffsdispersive[material, 1] * Tx[0, i, j, k] + updatecoeffsdispersive[material, 2] * Ex[i, j, k] Ex[i, j, k] = updatecoeffsE[material, 0] * Ex[i, j, k] + updatecoeffsE[material, 2] * (Hz[i, j, k] - Hz[i, j - 1, k]) - updatecoeffsE[material, 3] * (Hy[i, j, k] - Hy[i, j, k - 1]) - updatecoeffsE[material, 4] * phi # Ey component if nx != 1 or nz != 1: for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(0, ny): for k in range(1, nz): material = ID[1, i, j, k] phi = updatecoeffsdispersive[material, 0].real * Ty[0, i, j, k].real Ty[0, i, j, k] = updatecoeffsdispersive[material, 1] * Ty[0, i, j, k] + updatecoeffsdispersive[material, 2] * Ey[i, j, k] Ey[i, j, k] = updatecoeffsE[material, 0] * Ey[i, j, k] + updatecoeffsE[material, 3] * (Hx[i, j, k] - Hx[i, j, k - 1]) - updatecoeffsE[material, 1] * (Hz[i, j, k] - Hz[i - 1, j, k]) - updatecoeffsE[material, 4] * phi # Ez component if nx != 1 or ny != 1: for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(1, ny): for k in range(0, nz): material = ID[2, i, j, k] phi = updatecoeffsdispersive[material, 0].real * Tz[0, i, j, k].real Tz[0, i, j, k] = updatecoeffsdispersive[material, 1] * Tz[0, i, j, k] + updatecoeffsdispersive[material, 2] * Ez[i, j, k] Ez[i, j, k] = updatecoeffsE[material, 0] * Ez[i, j, k] + updatecoeffsE[material, 1] * (Hy[i, j, k] - Hy[i - 1, j, k]) - updatecoeffsE[material, 2] * (Hx[i, j, k] - Hx[i, j - 1, k]) - updatecoeffsE[material, 4] * phi cpdef void update_electric_dispersive_1pole_B( int nx, int ny, int nz, int nthreads, complextype_t[:, ::1] updatecoeffsdispersive, np.uint32_t[:, :, :, ::1] ID, complextype_t[:, :, :, ::1] Tx, complextype_t[:, :, :, ::1] Ty, complextype_t[:, :, :, ::1] Tz, floattype_t[:, :, ::1] Ex, floattype_t[:, :, ::1] Ey, floattype_t[:, :, ::1] Ez ): """This function updates a temporary dispersive material array when disperisive materials (with 1 pole) are present. Args: nx, ny, nz (int): Grid size in cells nthreads (int): Number of threads to use updatecoeffs, T, ID, E (memoryviews): Access to update coeffients, temporary, ID and field component arrays """ cdef Py_ssize_t i, j, k cdef int material # Ex component if ny != 1 or nz != 1: for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(1, ny): for k in range(1, nz): material = ID[0, i, j, k] Tx[0, i, j, k] = Tx[0, i, j, k] - updatecoeffsdispersive[material, 2] * Ex[i, j, k] # Ey component if nx != 1 or nz != 1: for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(0, ny): for k in range(1, nz): material = ID[1, i, j, k] Ty[0, i, j, k] = Ty[0, i, j, k] - updatecoeffsdispersive[material, 2] * Ey[i, j, k] # Ez component if nx != 1 or ny != 1: for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(1, ny): for k in range(0, nz): material = ID[2, i, j, k] Tz[0, i, j, k] = Tz[0, i, j, k] - updatecoeffsdispersive[material, 2] * Ez[i, j, k] ########################## # Magnetic field updates # ########################## cpdef void update_magnetic( int nx, int ny, int nz, int nthreads, floattype_t[:, ::1] updatecoeffsH, np.uint32_t[:, :, :, ::1] ID, floattype_t[:, :, ::1] Ex, floattype_t[:, :, ::1] Ey, floattype_t[:, :, ::1] Ez, floattype_t[:, :, ::1] Hx, floattype_t[:, :, ::1] Hy, floattype_t[:, :, ::1] Hz ): """This function updates the magnetic field components. Args: nx, ny, nz (int): Grid size in cells nthreads (int): Number of threads to use updatecoeffs, ID, E, H (memoryviews): Access to update coeffients, ID and field component arrays """ cdef Py_ssize_t i, j, k cdef int materialHx, materialHy, materialHz # 2D if nx == 1 or ny == 1 or nz == 1: # Hx component if ny == 1 or nz == 1: for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(0, ny): for k in range(0, nz): materialHx = ID[3, i, j, k] Hx[i, j, k] = updatecoeffsH[materialHx, 0] * Hx[i, j, k] - updatecoeffsH[materialHx, 2] * (Ez[i, j + 1, k] - Ez[i, j, k]) + updatecoeffsH[materialHx, 3] * (Ey[i, j, k + 1] - Ey[i, j, k]) # Hy component if nx == 1 or nz == 1: for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(1, ny): for k in range(0, nz): materialHy = ID[4, i, j, k] Hy[i, j, k] = updatecoeffsH[materialHy, 0] * Hy[i, j, k] - updatecoeffsH[materialHy, 3] * (Ex[i, j, k + 1] - Ex[i, j, k]) + updatecoeffsH[materialHy, 1] * (Ez[i + 1, j, k] - Ez[i, j, k]) # Hz component if nx == 1 or ny == 1: for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(0, ny): for k in range(1, nz): materialHz = ID[5, i, j, k] Hz[i, j, k] = updatecoeffsH[materialHz, 0] * Hz[i, j, k] - updatecoeffsH[materialHz, 1] * (Ey[i + 1, j, k] - Ey[i, j, k]) + updatecoeffsH[materialHz, 2] * (Ex[i, j + 1, k] - Ex[i, j, k]) # 3D else: for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads): for j in range(0, ny): for k in range(0, nz): materialHx = ID[3, i + 1, j, k] materialHy = ID[4, i, j + 1, k] materialHz = ID[5, i, j, k + 1] Hx[i + 1, j, k] = updatecoeffsH[materialHx, 0] * Hx[i + 1, j, k] - updatecoeffsH[materialHx, 2] * (Ez[i + 1, j + 1, k] - Ez[i + 1, j, k]) + updatecoeffsH[materialHx, 3] * (Ey[i + 1, j, k + 1] - Ey[i + 1, j, k]) Hy[i, j + 1, k] = updatecoeffsH[materialHy, 0] * Hy[i, j + 1, k] - updatecoeffsH[materialHy, 3] * (Ex[i, j + 1, k + 1] - Ex[i, j + 1, k]) + updatecoeffsH[materialHy, 1] * (Ez[i + 1, j + 1, k] - Ez[i, j + 1, k]) Hz[i, j, k + 1] = updatecoeffsH[materialHz, 0] * Hz[i, j, k + 1] - updatecoeffsH[materialHz, 1] * (Ey[i + 1, j, k + 1] - Ey[i, j, k + 1]) + updatecoeffsH[materialHz, 2] * (Ex[i, j + 1, k + 1] - Ex[i, j, k + 1])