# Copyright (C) 2015-2016: The University of Edinburgh # Authors: Craig Warren and Antonis Giannopoulos # # This file is part of gprMax. # # gprMax is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # gprMax is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with gprMax. If not, see . import os, argparse import h5py import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec #import scipy.io as sio moduledirectory = os.path.dirname(os.path.abspath(__file__)) """Plots antenna parameters (s11 parameter and input impedance and admittance) from an output file containing a transmission line source.""" # Parse command line arguments parser = argparse.ArgumentParser(description='Plots antenna parameters (s11 parameter and input impedance and admittance) from an output file containing a transmission line source.', usage='cd gprMax; python -m tools.plot_antenna_params outputfile') parser.add_argument('outputfile', help='name of output file including path') parser.add_argument('-tln', default=1, type=int, help='transmission line number') args = parser.parse_args() print("Antenna parameter analysis from file '{}'...".format(args.outputfile)) # Open output file and read some attributes file = args.outputfile f = h5py.File(file, 'r') dt = f.attrs['dt'] iterations = f.attrs['Iterations'] # Choose a specific frequency bin spacing #df = 1.5e6 #iterations = int((1 / df) / dt) # Calculate time array and frequency bin spacing time = np.linspace(0, 1, iterations) time *= (iterations * dt) df = 1 / np.amax(time) print('Time window: {:g} s ({} iterations)'.format(np.amax(time), iterations)) print('Time step: {:g} s'.format(dt)) print('Frequency bin spacing: {:g} Hz'.format(df)) # Read/calculate voltages and currents path = '/tls/tl' + str(args.tln) + '/' Vinc = f[path + 'Vinc'][:] Iinc = f[path + 'Iinc'][:] Vtotal = f[path +'Vtotal'][:] Itotal = f[path +'Itotal'][:] f.close() Vref = Vtotal - Vinc Iref = Itotal - Iinc # Frequency bins freqs = np.fft.fftfreq(Vinc.size, d=dt) # Delay correction - current lags voltage, so delay voltage to match current timestep delaycorrection = np.exp(-1j * 2 * np.pi * freqs * (dt / 2)) # Calculate s11 s11 = np.abs(np.fft.fft(Vref) * delaycorrection) / np.abs(np.fft.fft(Vinc) * delaycorrection) # Calculate input impedance zin = (np.fft.fft(Vtotal) * delaycorrection) / np.fft.fft(Itotal) # Load MoM zin from MATLAB antenna toolbox #MoM = {} #sio.loadmat(moduledirectory + '/../tests/numerical/vs_MoM_MATLAB/antenna_bowtie_fs/antenna_bowtie_fs_MoM.mat', MoM) # Calculate input admittance yin = np.fft.fft(Itotal) / (np.fft.fft(Vtotal) * delaycorrection) # Convert to decibels Vincp = 20 * np.log10(np.abs((np.fft.fft(Vinc) * delaycorrection))) Iincp = 20 * np.log10(np.abs(np.fft.fft(Iinc))) Vrefp = 20 * np.log10(np.abs((np.fft.fft(Vref) * delaycorrection))) Irefp = 20 * np.log10(np.abs(np.fft.fft(Iref))) Vtotalp = 20 * np.log10(np.abs((np.fft.fft(Vtotal) * delaycorrection))) Itotalp = 20 * np.log10(np.abs(np.fft.fft(Itotal))) s11 = 20 * np.log10(s11) # Set plotting range pltrangemin = 1 # To a certain drop from maximum power pltrangemax = np.where((np.amax(Vincp[1::]) - Vincp[1::]) > 60)[0][0] + 1 # To a maximum frequency #pltrangemax = np.where(freqs > 6e9)[0][0] pltrange = np.s_[pltrangemin:pltrangemax] # Print some useful values from s11, input impedance and admittance s11minfreq = np.where(s11[pltrange] == np.amin(s11[pltrange]))[0][0] print('s11 minimum: {:g} dB at {:g} Hz'.format(np.amin(s11[pltrange]), freqs[s11minfreq + pltrangemin])) print('At {:g} Hz...'.format(freqs[s11minfreq + pltrangemin])) print('Input impedance: {:.1f}{:+.1f}j Ohms'.format(np.abs(zin[s11minfreq + pltrangemin]), zin[s11minfreq + pltrangemin].imag)) print('Input admittance (mag): {:g} S'.format(np.abs(yin[s11minfreq + pltrangemin]))) print('Input admittance (phase): {:.1f} deg'.format(np.angle(yin[s11minfreq + pltrangemin], deg=True))) # Figure 1 # Plot incident voltage fig1, ax = plt.subplots(num='Transmission line parameters', figsize=(20, 12), facecolor='w', edgecolor='w') gs1 = gridspec.GridSpec(4, 2, hspace=0.7) ax = plt.subplot(gs1[0, 0]) ax.plot(time, Vinc, 'r', lw=2, label='Vinc') ax.set_title('Incident voltage') ax.set_xlabel('Time [s]') ax.set_ylabel('Voltage [V]') ax.set_xlim([0, np.amax(time)]) ax.grid() # Plot frequency spectra of incident voltage ax = plt.subplot(gs1[0, 1]) markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vincp[pltrange], '-.') plt.setp(baseline, 'linewidth', 0) plt.setp(stemlines, 'color', 'r') plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r') ax.plot(freqs[pltrange], Vincp[pltrange], 'r', lw=2) ax.set_title('Incident voltage') ax.set_xlabel('Frequency [Hz]') ax.set_ylabel('Power [dB]') ax.grid() # Plot incident current ax = plt.subplot(gs1[1, 0]) ax.plot(time, Iinc, 'b', lw=2, label='Vinc') ax.set_title('Incident current') ax.set_xlabel('Time [s]') ax.set_ylabel('Current [A]') ax.set_xlim([0, np.amax(time)]) ax.grid() # Plot frequency spectra of incident current ax = plt.subplot(gs1[1, 1]) markerline, stemlines, baseline = ax.stem(freqs[pltrange], Iincp[pltrange], '-.') plt.setp(baseline, 'linewidth', 0) plt.setp(stemlines, 'color', 'b') plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b') ax.plot(freqs[pltrange], Iincp[pltrange], 'b', lw=2) ax.set_title('Incident current') ax.set_xlabel('Frequency [Hz]') ax.set_ylabel('Power [dB]') ax.grid() # Plot total voltage ax = plt.subplot(gs1[2, 0]) ax.plot(time, Vtotal, 'r', lw=2, label='Vinc') ax.set_title('Total (incident + reflected) voltage') ax.set_xlabel('Time [s]') ax.set_ylabel('Voltage [V]') ax.set_xlim([0, np.amax(time)]) ax.grid() # Plot frequency spectra of total voltage ax = plt.subplot(gs1[2, 1]) markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vtotalp[pltrange], '-.') plt.setp(baseline, 'linewidth', 0) plt.setp(stemlines, 'color', 'r') plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r') ax.plot(freqs[pltrange], Vtotalp[pltrange], 'r', lw=2) ax.set_title('Total (incident + reflected) voltage') ax.set_xlabel('Frequency [Hz]') ax.set_ylabel('Power [dB]') ax.grid() # Plot total current ax = plt.subplot(gs1[3, 0]) ax.plot(time, Itotal, 'b', lw=2, label='Vinc') ax.set_title('Total (incident + reflected) current') ax.set_xlabel('Time [s]') ax.set_ylabel('Current [A]') ax.set_xlim([0, np.amax(time)]) ax.grid() # Plot frequency spectra of reflected current ax = plt.subplot(gs1[3, 1]) markerline, stemlines, baseline = ax.stem(freqs[pltrange], Itotalp[pltrange], '-.') plt.setp(baseline, 'linewidth', 0) plt.setp(stemlines, 'color', 'b') plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b') ax.plot(freqs[pltrange], Itotalp[pltrange], 'b', lw=2) ax.set_title('Total (incident + reflected) current') ax.set_xlabel('Frequency [Hz]') ax.set_ylabel('Power [dB]') ax.grid() ## Plot reflected (reflected) voltage #ax = plt.subplot(gs1[4, 0]) #ax.plot(time, Vref, 'r', lw=2, label='Vref') #ax.set_title('Reflected voltage') #ax.set_xlabel('Time [s]') #ax.set_ylabel('Voltage [V]') #ax.set_xlim([0, np.amax(time)]) #ax.grid() # ## Plot frequency spectra of reflected voltage #ax = plt.subplot(gs1[4, 1]) #markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vrefp[pltrange], '-.') #plt.setp(baseline, 'linewidth', 0) #plt.setp(stemlines, 'color', 'r') #plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r') #ax.plot(freqs[pltrange], Vrefp[pltrange], 'r', lw=2) #ax.set_title('Reflected voltage') #ax.set_xlabel('Frequency [Hz]') #ax.set_ylabel('Power [dB]') #ax.grid() # ## Plot reflected (reflected) current #ax = plt.subplot(gs1[5, 0]) #ax.plot(time, Iref, 'b', lw=2, label='Iref') #ax.set_title('Reflected current') #ax.set_xlabel('Time [s]') #ax.set_ylabel('Current [A]') #ax.set_xlim([0, np.amax(time)]) #ax.grid() # ## Plot frequency spectra of reflected current #ax = plt.subplot(gs1[5, 1]) #markerline, stemlines, baseline = ax.stem(freqs[pltrange], Irefp[pltrange], '-.') #plt.setp(baseline, 'linewidth', 0) #plt.setp(stemlines, 'color', 'b') #plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b') #ax.plot(freqs[pltrange], Irefp[pltrange], 'b', lw=2) #ax.set_title('Reflected current') #ax.set_xlabel('Frequency [Hz]') #ax.set_ylabel('Power [dB]') #ax.grid() # Figure 2 # Plot frequency spectra of s11 fig2, ax = plt.subplots(num='Antenna parameters', figsize=(20, 12), facecolor='w', edgecolor='w') gs2 = gridspec.GridSpec(3, 2, hspace=0.5) ax = plt.subplot(gs2[0, 0]) markerline, stemlines, baseline = ax.stem(freqs[pltrange], s11[pltrange], '-.') plt.setp(baseline, 'linewidth', 0) plt.setp(stemlines, 'color', 'g') plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') ax.plot(freqs[pltrange], s11[pltrange], 'g', lw=2) ax.set_title('s11') ax.set_xlabel('Frequency [Hz]') ax.set_ylabel('Power [dB]') #ax.set_xlim([0.88e9, 1.02e9]) #ax.set_ylim([-20, 0]) ax.grid() # Plot input resistance (real part of impedance) ax = plt.subplot(gs2[1, 0]) markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].real, '-.') plt.setp(baseline, 'linewidth', 0) plt.setp(stemlines, 'color', 'g') plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') ax.plot(freqs[pltrange], zin[pltrange].real, 'g', lw=2) ax.set_title('Input impedance (resistive)') ax.set_xlabel('Frequency [Hz]') ax.set_ylabel('Resistance [Ohms]') #ax.set_xlim([0.88e9, 1.02e9]) ax.set_ylim(bottom=0) #ax.set_ylim([0, 350]) ax.grid() # Plot input reactance (imaginery part of impedance) ax = plt.subplot(gs2[1, 1]) markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].imag, '-.') plt.setp(baseline, 'linewidth', 0) plt.setp(stemlines, 'color', 'g') plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') ax.plot(freqs[pltrange], zin[pltrange].imag, 'g', lw=2) ax.set_title('Input impedance (reactive)') ax.set_xlabel('Frequency [Hz]') ax.set_ylabel('Reactance [Ohms]') #ax.set_xlim([0.88e9, 1.02e9]) #ax.set_ylim([-1400, 200]) ax.grid() # Plot input admittance (magnitude) ax = plt.subplot(gs2[2, 0]) markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.abs(yin[pltrange]), '-.') plt.setp(baseline, 'linewidth', 0) plt.setp(stemlines, 'color', 'g') plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') ax.plot(freqs[pltrange], np.abs(yin[pltrange]), 'g', lw=2) ax.set_title('Input admittance (magnitude)') ax.set_xlabel('Frequency [Hz]') ax.set_ylabel('Admittance [Siemens]') #ax.set_xlim([0.88e9, 1.02e9]) #ax.set_ylim([0, 0.035]) ax.grid() # Plot input admittance (phase) ax = plt.subplot(gs2[2, 1]) markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.angle(yin[pltrange], deg=True), '-.') plt.setp(baseline, 'linewidth', 0) plt.setp(stemlines, 'color', 'g') plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') ax.plot(freqs[pltrange], np.angle(yin[pltrange], deg=True), 'g', lw=2) ax.set_title('Input admittance (phase)') ax.set_xlabel('Frequency [Hz]') ax.set_ylabel('Phase [degrees]') #ax.set_xlim([0.88e9, 1.02e9]) #ax.set_ylim([-40, 100]) ax.grid() # Figure 3 - Comparison of numerical modelling techniques #fig3, ax = plt.subplots(num='FDTD vs MoM', figsize=(20, 5), facecolor='w', edgecolor='w') #gs3 = gridspec.GridSpec(1, 2, hspace=0.5) # ## Plot input resistance (real part of impedance) #ax = plt.subplot(gs3[0, 0]) #ax.plot(freqs[pltrange], zin[pltrange].real, 'g', lw=2, label='FDTD') #ax.plot(MoM['freqs'], MoM['zin'].real, 'r', lw=2, ls='--', label='MoM') #ax.set_title('Input impedance (resistive)') #ax.set_xlabel('Frequency [Hz]') #ax.set_ylabel('Resistance [Ohms]') ##ax.set_xlim([0.88e9, 1.02e9]) #ax.set_ylim(bottom=0) #ax.set_ylim([0, 350]) #ax.grid() #ax.legend() # ## Plot input reactance (imaginery part of impedance) #ax = plt.subplot(gs3[0, 1]) #ax.plot(freqs[pltrange], zin[pltrange].imag, 'g', lw=2, label='FDTD') #ax.plot(MoM['freqs'], -MoM['zin'].imag, 'r', lw=2, ls='--', label='MoM') #ax.set_title('Input impedance (reactive)') #ax.set_xlabel('Frequency [Hz]') #ax.set_ylabel('Reactance [Ohms]') ##ax.set_xlim([0.88e9, 1.02e9]) #ax.set_ylim([-350, 350]) #ax.grid() #ax.legend() # Save a PDF/PNG of the figure #fig1.savefig(os.path.splitext(os.path.abspath(file))[0] + '_tl_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1) #fig2.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1) #fig3.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1) #fig1.savefig(os.path.splitext(os.path.abspath(file))[0] + '_tl_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1) #fig2.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1) plt.show()