# Copyright (C) 2016, Craig Warren # # This module is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. # To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/. # # Please use the attribution at http://dx.doi.org/10.1016/j.sigpro.2016.04.010 import argparse import os import sys import numpy as np import matplotlib.pyplot as plt from gprMax.constants import c, z0 # Parse command line arguments parser = argparse.ArgumentParser(description='Plot field patterns from a simulation with receivers positioned in circles around an antenna. This module should be used after the field pattern data has been processed and stored using the initial_save.py module.', usage='cd gprMax; python -m user_libs.antenna_patterns.plot_fields numpyfile') parser.add_argument('numpyfile', help='name of numpy file including path') # parser.add_argument('hertzian', help='name of numpy file including path') args = parser.parse_args() patterns = np.load(args.numpyfile) # hertzian = np.load(args.hertzian) ######################################## # User configurable parameters # Pattern type (E or H) type = 'H' # Relative permittivity of half-space for homogeneous materials (set to None for inhomogeneous) epsr = 5 # Observation radii and angles radii = np.linspace(0.1, 0.3, 20) theta = np.linspace(3, 357, 60) theta = np.deg2rad(np.append(theta, theta[0])) # Append start value to close circle # Centre frequency of modelled antenna f = 1.5e9 # GSSI 1.5GHz antenna model # Largest dimension of antenna transmitting element D = 0.060 # GSSI 1.5GHz antenna model # Minimum value for plotting energy and ring steps (dB) min = -72 step = 12 ######################################## # Critical angle and velocity if epsr: mr = 1 z1 = np.sqrt(mr / epsr) * z0 v1 = c / np.sqrt(epsr) thetac = np.round(np.rad2deg(np.arcsin(v1 / c))) wavelength = v1 / f # Print some useful information print('Centre frequency: {} GHz'.format(f / 1e9)) if epsr: print('Critical angle for Er {} is {} degrees'.format(epsr, thetac)) print('Wavelength: {:.3f} m'.format(wavelength)) print('Observation distance(s) from {:.3f} m ({:.1f} wavelengths) to {:.3f} m ({:.1f} wavelengths)'.format(radii[0], radii[0] / wavelength, radii[-1], radii[-1] / wavelength)) print('Theoretical boundary between reactive & radiating near-field (0.62*sqrt((D^3/wavelength): {:.3f} m'.format(0.62 * np.sqrt((D**3) / wavelength))) print('Theoretical boundary between radiating near-field & far-field (2*D^2/wavelength): {:.3f} m'.format((2 * D**2) / wavelength)) # Setup figure fig = plt.figure(num=args.numpyfile, figsize=(8, 8), facecolor='w', edgecolor='w') ax = plt.subplot(111, polar=True) cmap = plt.cm.get_cmap('rainbow') ax.set_prop_cycle('color', [cmap(i) for i in np.linspace(0, 1, len(radii))]) # Critical angle window and air/subsurface interface lines if epsr: ax.plot([0, np.deg2rad(180 - thetac)], [min, 0], color='0.7', lw=2) ax.plot([0, np.deg2rad(180 + thetac)], [min, 0], color='0.7', lw=2) ax.plot([np.deg2rad(270), np.deg2rad(90)], [0, 0], color='0.7', lw=2) ax.annotate('Air', xy=(np.deg2rad(270), 0), xytext=(8, 8), textcoords='offset points') ax.annotate('Ground', xy=(np.deg2rad(270), 0), xytext=(8, -15), textcoords='offset points') # Plot patterns for patt in range(0, len(radii)): pattplot = np.append(patterns[patt, :], patterns[patt, 0]) # Append start value to close circle pattplot = pattplot / np.max(np.max(patterns)) # Normalise, based on set of patterns # Calculate power (ignore warning from taking a log of any zero values) with np.errstate(divide='ignore'): power = 10 * np.log10(pattplot) # Replace any NaNs or Infs from zero division power[np.invert(np.isfinite(power))] = 0 ax.plot(theta, power, label='{:.2f}m'.format(radii[patt]), marker='.', ms=6, lw=1.5) # Add Hertzian dipole plot # hertzplot1 = np.append(hertzian[0, :], hertzian[0, 0]) # Append start value to close circle # hertzplot1 = hertzplot1 / np.max(np.max(hertzian)) # ax.plot(theta, 10 * np.log10(hertzplot1), label='Inf. dipole, 0.1m', color='black', ls='-.', lw=3) # hertzplot2 = np.append(hertzian[-1, :], hertzian[-1, 0]) # Append start value to close circle # hertzplot2 = hertzplot2 / np.max(np.max(hertzian)) # ax.plot(theta, 10 * np.log10(hertzplot2), label='Inf. dipole, 0.58m', color='black', ls='--', lw=3) # Theta axis options ax.set_theta_zero_location('N') ax.set_theta_direction('clockwise') ax.set_thetagrids(np.arange(0, 360, 30), frac=1.1) # Radial axis options ax.set_rmax(0) ax.set_rlabel_position(45) ax.set_yticks(np.arange(min, step, step)) yticks = ax.get_yticks().tolist() yticks[-1] = '0 dB' ax.set_yticklabels(yticks) # Grid and legend ax.grid(True) handles, existlabels = ax.get_legend_handles_labels() leg = ax.legend([handles[0], handles[-1]], [existlabels[0], existlabels[-1]], ncol=2, loc=(0.27, -0.12), frameon=False) # Plot just first and last legend entries # leg = ax.legend([handles[0], handles[-3], handles[-2], handles[-1]], [existlabels[0], existlabels[-3], existlabels[-2], existlabels[-1]], ncol=4, loc=(-0.13,-0.12), frameon=False) [legobj.set_linewidth(2) for legobj in leg.legendHandles] # Save a pdf of the plot savename = os.path.splitext(args.numpyfile)[0] + '.pdf' fig.savefig(savename, dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1) # savename = os.path.splitext(args.numpyfile)[0] + '.png' # fig.savefig(savename, dpi=150, format='png', bbox_inches='tight', pad_inches=0.1) plt.show()