% outputfile_converter.m - converts gprMax merged output HDF5 file to % * RD3 16bit (Mala GeoScience), % * DZT 16bit (Geophysical Survey Systems Inc.), % * DT1 16bit (Sensors & Software Inc.) % * IPRB 16bit (Impulse Radar) % % Author: Dimitrios Angelis % Copyright: 2017-2020 % Last modified: 28/05/2020 clear, clc, close all; % Select file ============================================================= [infile, path] = uigetfile('*.out', 'Select gprMax output file', ... 'Multiselect', 'Off'); if isequal(infile, 0) infile = []; path = []; HDR = []; data = []; return end % File name, path name and file extension ================================= HDR.fname = strrep(lower(infile), '.out', ''); HDR.pname = path; HDR.fext = 'out'; % Additional information ================================================== % The HDF5 file does not contain information about the centre frequency of % the waveform, the Tx-Rx separation distance and the trace step. The user % needs to provide this information. while 1 prompt = {'Rx-component (Ex or Ey or Ez)', ... 'Tx Centre Frequency (MHz)', ... 'Tx-Rx Distance (m)', ... 'Trace Interval / Step (m)'}; dlg_title = 'Additional Information'; answer = inputdlg(prompt, dlg_title, [1 40]); answers = str2double(answer); if isempty(answer) HDR = []; data = []; return elseif strcmp(answer(1), 'EX') == 0 & ... strcmp(answer(1), 'Ex') == 0 & ... strcmp(answer(1), 'ex') == 0 & ... strcmp(answer(1), 'EY') == 0 & ... strcmp(answer(1), 'Ey') == 0 & ... strcmp(answer(1), 'ey') == 0 & ... strcmp(answer(1), 'EZ') == 0 & ... strcmp(answer(1), 'Ez') == 0 & ... strcmp(answer(1), 'ez') == 0 || ... isnan(answers(2)) || answers(2) <= 0 || ... isnan(answers(3)) || answers(3) < 0 || ... isnan(answers(4)) || answers(4) <= 0 continue else break end end % Read data from HDF5 file ================================================ infile = [HDR.pname infile]; % h5disp(infile); if strcmp(answer(1), 'EX') || strcmp(answer(1), 'Ex') || strcmp(answer(1), 'ex') dataex = h5read(infile, '/rxs/rx1/Ex'); data = dataex'; elseif strcmp(answer(1), 'EY') || strcmp(answer(1), 'Ey') || strcmp(answer(1), 'ey') dataey = h5read(infile, '/rxs/rx1/Ey'); data = dataey'; elseif strcmp(answer(1), 'EZ') || strcmp(answer(1), 'Ez') || strcmp(answer(1), 'ez') dataez = h5read(infile, '/rxs/rx1/Ez'); data = dataez'; end % Sigle to double precision =============================================== data = double(data); % Create header =========================================================== HDR.centre_freq = answers(2); % Centre frequency (MHz) HDR.ant_sep = answers(3); % Antenna seperation / Tx-Rx distance (m) HDR.trac_int = answers(4); % Trace interval / step (m) HDR.samp_int = h5readatt(infile, '/', 'dt') * 10^9; % Sampling interval (ns) HDR.samp_freq = (1 / HDR.samp_int) * 10^3; % Sampling frequency (MHz) [HDR.num_samp, HDR.num_trac] = size(data); % Number of samples & traces HDR.time_window = HDR.num_samp * HDR.samp_int; % Time window (ns) HDR.antenna = ['gprMax ', num2str(HDR.centre_freq), 'MHz']; % Antenna name % ************************************************************************* % ******************************** Optional ******************************* % Resample to 1024 samples ================================================ % I perform this step for either 512 or 1024 samples because many GPR data % visulization/processing software cannot load files with more samples. tx1 = 1 : HDR.num_samp; fs1 = 1024 / HDR.num_samp; % <------- 1024 samples data = resample(data, tx1, fs1, 'pchip'); [HDR.num_samp, ~] = size(data); % New number of samples after resampling HDR.samp_int = HDR.time_window / HDR.num_samp; % New sampling interval (ns) after resampling HDR.samp_freq = (1 / HDR.samp_int) * 10^3; % New sampling frequency (MHz) after resampling % ************************************************************************* % ************************************************************************* % ************************************************************************* % ******************************** Optional ******************************* % Convert to 16 bit scale ================================================= data = data * 32767.5 ./ max(max(abs(data))); % signal * ((1 - 1 / 2^bitrate) * 32768) / max(signal) data(data > 32767) = 32767; data(data < -32768) = -32768; data = round(data); %************************************************************************** %************************************************************************** % Plots =================================================================== pmin = min(data(:)); % Minimun plot scale pmax = max(data(:)); % Maximum plot scale x = 0 : HDR.trac_int : (HDR.num_trac - 1) * HDR.trac_int; % Distance of each trace (m) t = HDR.samp_int : HDR.samp_int : HDR.num_samp * HDR.samp_int; % Time of each sample (ns) % Bscan plot f1 = figure('Name', 'Bscan', ... 'NumberTitle', 'off', ... 'Menubar', 'None', ... 'Toolbar', 'Figure'); clims = [pmin pmax]; colormap (bone(256)); % Black(negative) to white(positive) im1 = imagesc(x, t, data, clims); set(im1, 'cdatamapping', 'scaled'); title(HDR.fname); xlabel('Distance (m)'); ylabel('Time (ns)'); ax1 = gca; ax1.XAxisLocation = 'Top'; ax1.FontSize = 12; box off; movegui(f1, 'northeast'); % Frequency spectrum plot m = 2.^nextpow2(HDR.num_samp); amp = fft(data, m); amp = (abs(amp(1 : m / 2, :)) / m) * 2; amp = mean(amp, 2); freq = HDR.samp_freq .* (0 : (m / 2) - 1) / m; f2 = figure('Name', 'Frequency Spectrum', ... 'NumberTitle', 'off', ... 'Menubar', 'None', ... 'Toolbar', 'Figure'); area(freq, amp, 'FaceColor', 'black'); title(HDR.fname); xlabel('Frequency (MHz)'); ylabel('Amplitude'); ax2 = gca; ax2.FontSize = 12; box off; movegui(f2, 'southeast'); % Export option: RD3 or DZT or DT1 or IPRB ================================ while 1 prompt = {'1 = RD3, 2 = DZT, 3 = DT1, 4 = IPRB'}; dlg_title = 'Choose GPR Format'; answer = inputdlg(prompt, dlg_title, [1 40]); answer = str2double(answer); if isempty(answer) return elseif ~isnumeric(answer) || answer ~= 1 && answer ~= 2 ... && answer ~= 3 && answer ~= 4 continue else gpr_format = answer; break end end wb = waitbar(0, 'Exporting...', 'Name', 'Exporting File'); % ========================================================================= % RAD / RD3, Mala GeoScience ============================================== % RAD is the header file. % In this file is all the important information such as number of samples, % traces, etc. % RD3 is the data file. % This file contains only the data (amplitude values) in a 16 bit binary % form. if gpr_format == 1 % Header structure HDR.fname = HDR.fname; % File name HDR.num_samp = HDR.num_samp; % Number of samples HDR.samp_freq = HDR.samp_freq; % Sampling frequency (MHz) HDR.frequency_steps = 1; % Frequency steps HDR.signal_pos = 0; % Signal position HDR.raw_signal_pos = 0; % Raw signal position HDR.distance_flag = 1; % Distance flag: 0 time interval, 1 distance interval HDR.time_flag = 0; % Time flag : 0 distance interval, 1 time interval HDR.program_flag = 0; % Program flag HDR.external_flag = 0; % External flag HDR.trac_int_sec = 0; % Trace interval in seconds(only if Time flag = 1) HDR.trac_int = HDR.trac_int; % Trace interval in meters (only if Distance flag = 1) HDR.operator = 'Unknown'; % Operator HDR.customer = 'Unknown'; % Customer HDR.site = 'gprMax'; % Site HDR.antenna = HDR.antenna; % Antenna name HDR.antenna_orientation = 'NOT VALID FIELD'; % Antenna orientation HDR.ant_sep = HDR.ant_sep; % Antenna seperation / Tx-Rx distance (m) HDR.comment = '----'; % Comment HDR.time_window = HDR.time_window; % Time window (ns) HDR.stacks = 1; % Stacks HDR.stack_exponent = 0; % Stack exponent HDR.stacking_time = 0; % Stacking Time HDR.num_trac = HDR.num_trac; % Number of traces HDR.stop_pos = HDR.num_trac * HDR.trac_int; % Stop position (m) HDR.system_calibration = 0; HDR.start_pos = 0; % Start position (m) HDR.short_flag = 1; HDR.intermediate_flag = 0; HDR.long_flag = 0; HDR.preprocessing = 0; HDR.high = 0; HDR.low = 0; HDR.fixed_increment = 0; HDR.fixed_moves_up = 0; HDR.fixed_moves_down = 1; HDR.fixed_position = 0; HDR.wheel_calibration = 0; HDR.positive_direction = 1; % RAD file fid = fopen([HDR.fname '.rad'], 'w'); fprintf(fid, 'SAMPLES:%i\r\n', HDR.num_samp); fprintf(fid, 'FREQUENCY:%0.6f\r\n', HDR.samp_freq); fprintf(fid, 'FREQUENCY STEPS:%i\r\n', HDR.frequency_steps); fprintf(fid, 'SIGNAL POSITION:%0.6f\r\n', HDR.signal_pos); fprintf(fid, 'RAW SIGNAL POSITION:%i\r\n', HDR.raw_signal_pos); fprintf(fid, 'DISTANCE FLAG:%i\r\n', HDR.distance_flag); fprintf(fid, 'TIME FLAG:%i\r\n', HDR.time_flag); fprintf(fid, 'PROGRAM FLAG:%i\r\n', HDR.program_flag); fprintf(fid, 'EXTERNAL FLAG:%i\r\n', HDR.external_flag); fprintf(fid, 'TIME INTERVAL:%0.6f\r\n', HDR.trac_int_sec); fprintf(fid, 'DISTANCE INTERVAL:%0.6f\r\n', HDR.trac_int); fprintf(fid, 'OPERATOR:%s\r\n', HDR.operator); fprintf(fid, 'CUSTOMER:%s\r\n', HDR.customer); fprintf(fid, 'SITE:%s\r\n', HDR.site); fprintf(fid, 'ANTENNAS:%s\r\n', HDR.antenna); fprintf(fid, 'ANTENNA ORIENTATION:%s\r\n', HDR.antenna_orientation); fprintf(fid, 'ANTENNA SEPARATION:%0.6f\r\n', HDR.ant_sep); fprintf(fid, 'COMMENT:%s\r\n', HDR.comment); fprintf(fid, 'TIMEWINDOW:%0.6f\r\n', HDR.time_window); fprintf(fid, 'STACKS:%i\r\n', HDR.stacks); fprintf(fid, 'STACK EXPONENT:%i\r\n', HDR.stack_exponent); fprintf(fid, 'STACKING TIME:%0.6f\r\n', HDR.stacking_time); fprintf(fid, 'LAST TRACE:%i\r\n', HDR.num_trac); fprintf(fid, 'STOP POSITION:%0.6f\r\n', HDR.stop_pos); fprintf(fid, 'SYSTEM CALIBRATION:%0.6f\r\n', HDR.system_calibration); fprintf(fid, 'START POSITION:%0.6f\r\n', HDR.start_pos); fprintf(fid, 'SHORT FLAG:%i\r\n', HDR.short_flag); fprintf(fid, 'INTERMEDIATE FLAG:%i\r\n', HDR.intermediate_flag); fprintf(fid, 'LONG FLAG:%i\r\n', HDR.long_flag); fprintf(fid, 'PREPROCESSING:%i\r\n', HDR.preprocessing); fprintf(fid, 'HIGH:%i\r\n', HDR.high); fprintf(fid, 'LOW:%i\r\n', HDR.low); fprintf(fid, 'FIXED INCREMENT:%0.6f\r\n', HDR.fixed_increment); fprintf(fid, 'FIXED MOVES UP:%i\r\n', HDR.fixed_moves_up); fprintf(fid, 'FIXED MOVES DOWN:%i\r\n', 1); fprintf(fid, 'FIXED POSITION:%0.6f\r\n', HDR.fixed_moves_down); fprintf(fid, 'WHEEL CALIBRATION:%0.6f\r\n', HDR.wheel_calibration); fprintf(fid, 'POSITIVE DIRECTION:%i\r\n', HDR.positive_direction); fclose(fid); % RD3 file fid = fopen([HDR.fname '.rd3'], 'w'); fwrite(fid, data, 'short'); fclose(fid); % ========================================================================= % DZT, Geophysical Survey Systems Inc. (GSSI) ============================= % DZT is a binary file that conists of the file header with all the % important inforation such as number of samples, traces, channels, etc., % followed by the data section. % All the information is contained in this file except the Tx-Rx separation % distance. It is possible that the official GSSI software has stored this % information and uses the antenna name to detect it. All the other GPR % data visualization/processing software do not detect the Tx-Rx separation % distance. % DZT file can be either 8/16/32 bit. Since I have rescaled gprMax output % data into a 16bit scale, this file will also be 16bit. elseif gpr_format == 2 % Header structure HDR.fname = HDR.fname; % File name HDR.tag = 255; % Header = 255 HDR.data_offset = 1024; % Offset to data from the beginning of file HDR.num_samp = HDR.num_samp; % Number of samples HDR.data_format = 16; % Bits per data word (8, 16, 32) HDR.binary_offset = 32768; % Binary offset, 8 bit = 128, 16 bit = 32768 HDR.scans_per_second = 0; % Scans per second HDR.scans_per_meter = 1 / HDR.trac_int; % Scans per meter HDR.meters_per_mark = 0; % Meters per mark HDR.zero_time_adjustment = 0; % Time zero adjustment (ns) HDR.time_window = HDR.time_window; % Time window (with no corrections i.e zero time) HDR.scans_per_pass = 0; % Scan per pass for 2D files HDR.createdate.sec = 0 / 2; % Structure, date created HDR.createdate.min = 0; HDR.createdate.hour = 0; HDR.createdate.day = 0; HDR.createdate.month = 0; HDR.createdate.year = 0 - 1980; date_time = clock; HDR.modifydate.sec = date_time(6) / 2; % Structure, date modified HDR.modifydate.min = date_time(5); HDR.modifydate.hour = date_time(4); HDR.modifydate.day = date_time(3); HDR.modifydate.month = date_time(2); HDR.modifydate.year = date_time(1) - 1980; HDR.offset_to_range_gain = 0; % Offset to range gain HDR.size_of_range_gain = 0; % Size of range gain HDR.offset_to_text = 0; % Offset to text HDR.size_of_text = 0; % Size of text HDR.offset_to_proc_his = 0; % Offset to processing history HDR.size_of_proc_his = 0; % Size of processing history HDR.num_channels = 1; % Number of channels HDR.dielectric_constant = 8; % Dielectric constant (8 is a random number) HDR.top_position = 0; % Top position c = 299792458; v = (c / sqrt(HDR.dielectric_constant)) * 10^-9; HDR.range_depth = v * (HDR.time_window / 2); % Range depth (m) HDR.reserved = zeros(31, 1); % Reserved HDR.data_type = 0; % Data type if length(HDR.antenna) == 14 % Antenna name HDR.antenna = HDR.antenna; elseif length(HDR.antenna) < 14 if verLessThan('matlab', '9.1') HDR.antenna = [HDR.antenna repmat(' ', ... 1, 14 - length(HDR.antenna))]; else HDR.antenna = pad(HDR.antenna, 14, 'right'); end elseif length(HDR.antenna) > 14 HDR.antenna = HDR.antenna(1 : 14); end HDR.channel_mask = 0; % Channel mask if length(HDR.fname) == 12 % Raw file name (File name during survey) HDR.raw_file_name = HDR.fname; elseif length(HDR.fname) < 12 if verLessThan('matlab', '9.1') HDR.raw_file_name = [HDR.raw_file_name repmat(' ', ... 1, 12 - length(HDR.raw_file_name))]; else HDR.raw_file_name = pad(HDR.fname, 12, 'right'); end elseif length(HDR.fname) > 12 HDR.raw_file_name = HDR.fname(1 : 12); end HDR.checksum = 0; % Checksum HDR.num_gain_points = 0; % Number of gain points HDR.range_gain_db = []; % Range gain in db HDR.variable = zeros(896, 1); % DZT file fid = fopen([HDR.fname '.dzt'], 'w'); fwrite(fid, HDR.tag, 'ushort'); fwrite(fid, HDR.data_offset, 'ushort'); fwrite(fid, HDR.num_samp, 'ushort'); fwrite(fid, HDR.data_format, 'ushort'); fwrite(fid, HDR.binary_offset, 'ushort'); fwrite(fid, HDR.scans_per_second, 'float'); fwrite(fid, HDR.scans_per_meter, 'float'); fwrite(fid, HDR.meters_per_mark, 'float'); fwrite(fid, HDR.zero_time_adjustment, 'float'); fwrite(fid, HDR.time_window, 'float'); fwrite(fid, HDR.scans_per_pass, 'ushort'); fwrite(fid, HDR.createdate.sec, 'ubit5'); fwrite(fid, HDR.createdate.min, 'ubit6'); fwrite(fid, HDR.createdate.hour, 'ubit5'); fwrite(fid, HDR.createdate.day, 'ubit5'); fwrite(fid, HDR.createdate.month, 'ubit4'); fwrite(fid, HDR.createdate.year, 'ubit7'); fwrite(fid, HDR.modifydate.sec, 'ubit5'); fwrite(fid, HDR.modifydate.min, 'ubit6'); fwrite(fid, HDR.modifydate.hour, 'ubit5'); fwrite(fid, HDR.modifydate.day, 'ubit5'); fwrite(fid, HDR.modifydate.month, 'ubit4'); fwrite(fid, HDR.modifydate.year, 'ubit7'); fwrite(fid, HDR.offset_to_range_gain, 'ushort'); fwrite(fid, HDR.size_of_range_gain, 'ushort'); fwrite(fid, HDR.offset_to_text, 'ushort'); fwrite(fid, HDR.size_of_text, 'ushort'); fwrite(fid, HDR.offset_to_proc_his, 'ushort'); fwrite(fid, HDR.size_of_proc_his, 'ushort'); fwrite(fid, HDR.num_channels, 'ushort'); fwrite(fid, HDR.dielectric_constant, 'float'); fwrite(fid, HDR.top_position, 'float'); fwrite(fid, HDR.range_depth, 'float'); fwrite(fid, HDR.reserved, 'char'); fwrite(fid, HDR.data_type, 'char'); fwrite(fid, HDR.antenna, 'char'); fwrite(fid, HDR.channel_mask, 'ushort'); fwrite(fid, HDR.raw_file_name, 'char'); fwrite(fid, HDR.checksum, 'ushort'); fwrite(fid, HDR.num_gain_points, 'ushort'); fwrite(fid, HDR.range_gain_db, 'float'); fwrite(fid, HDR.variable, 'char'); fseek(fid, HDR.data_offset, 'bof'); data = data + 2^15; fwrite(fid, data, 'ushort'); fclose(fid); % ========================================================================= % HD / DT1, Sensors & Software Inc. ======================================= % HD is the header file. % In this file all the important information such as number of samples, % traces, stacks, etc. can be found. % DT1 is the data file. % This file is written in a 16 bit binary form and contains as many records % as there are traces. Each record consists of a header and a data section. % This means that in this file there are also stored information such as % the number of samples, traces, etc. elseif gpr_format == 3 %Header structure of HD HDR.fname = HDR.fname; % File name HDR.file_tag = 1234; % File tag = 1234 HDR.system = HDR.antenna; % The system the data collected with date_time = clock; HDR.date = ([num2str(date_time(1)), '-' ... num2str(date_time(2)), '-' ... num2str(date_time(3))]); % Date HDR.num_trac = HDR.num_trac; % Number of traces HDR.num_samp = HDR.num_samp; % Number of samples HDR.time_zero_point = 0; % Time zero point HDR.time_window = HDR.time_window; % Total time window (ns) HDR.start_position = 0; % Start position (m) HDR.final_position = (HDR.num_trac - 1) * HDR.trac_int; % Stop position (m) HDR.trac_int = HDR.trac_int; % Trace interval (m) HDR.pos_units = 'm'; % Position units HDR.nominal_freq = HDR.centre_freq; % Nominal freq. / Centre freq. (MHz) HDR.ant_sep = HDR.ant_sep; % Antenna seperation / Tx-Rx distance (m) HDR.pulser_voltage = 0; % Pulser voltage (V) HDR.stacks = 1; % Number of stacks HDR.survey_mode = 'Reflection'; % Survey mode % HDR.odometer = 0; % Odometer Cal (t/m) % HDR.stacking_type = 'F1'; % Stacking type % HDR.dvl_serial = '0000-0000-0000'; % DVL serial % HDR.console_serial = '000000000000'; % Console serial % HDR.tx_serial = '0000-0000-0000'; % Transmitter serial % HDR.rx_serial = '0000-0000-0000'; % Receiver Serial % Header structure of DT1 HDR.num_each_trac = 1 : 1 : HDR.num_trac; % Number of each trace 1, 2, 3, ... num_trac HDR.position = 0 : HDR.trac_int : ... (HDR.num_trac - 1) * HDR.trac_int; % Position of each trace (m) HDR.num_samp_each_trac = zeros(1, HDR.num_trac) + HDR.num_samp; % Number of samples of each trace HDR.elevation = zeros(1, HDR.num_trac); % Elevation / topography of each trace HDR.not_used1 = zeros(1, HDR.num_trac); % Not used HDR.bytes = zeros(1, HDR.num_trac) + 2; % Always 2 for Rev 3 firmware HDR.time_window_each_trac = zeros(1, HDR.num_trac) + HDR.time_window; % Time window of each trace (ns) HDR.stacks_each_trac = ones(1, HDR.num_trac); % Number of stacks each trace HDR.rsv_gps_x = zeros(1, HDR.num_trac); % Reserved for GPS X position (double*8 number) HDR.rsv_gps_y = zeros(1, HDR.num_trac); % Reserved for GPS Y position (double*8 number) HDR.rsv_gps_z = zeros(1, HDR.num_trac); % Reserved for GPS Z position (double*8 number) HDR.rsv_rx_x = zeros(1, HDR.num_trac); % Reserved for receiver x position HDR.rsv_rx_y = zeros(1, HDR.num_trac); % Reserved for receiver y position HDR.rsv_rx_z = zeros(1, HDR.num_trac); % Reserved for receiver z position HDR.rsv_tx_x = zeros(1, HDR.num_trac); % Reserved for transmitter x position HDR.rsv_tx_y = zeros(1, HDR.num_trac); % Reserved for transmitter y position HDR.rsv_tx_z = zeros(1, HDR.num_trac); % Reserved for transmitter z position HDR.time_zero = zeros(1, HDR.num_trac); % Time zero adjustment where: point(x) = point(x + adjustment) HDR.zero_flag = zeros(1, HDR.num_trac); % 0 = data ok, 1 = zero data HDR.not_used2 = zeros(1, HDR.num_trac); % Not used 2 HDR.time = zeros(1, HDR.num_trac); % Time of day data collected in seconds past midnight HDR.comment_flag = zeros(1, HDR.num_trac); % Comment flag HDR.comment = zeros(1, 28); % Comment % HD file fid = fopen([HDR.fname '.hd'], 'w'); fprintf(fid, '%i\r\n', HDR.file_tag); fprintf(fid, 'Data Collected with %s\r\n', HDR.system); fprintf(fid, '%s\r\n', HDR.date); fprintf(fid, 'NUMBER OF TRACES = %i\r\n', HDR.num_trac); fprintf(fid, 'NUMBER OF PTS/TRC = %i\r\n', HDR.num_samp); fprintf(fid, 'TIMEZERO AT POINT = %i\r\n', HDR.time_zero_point); fprintf(fid, 'TOTAL TIME WINDOW = %0.6f\r\n', HDR.time_window); fprintf(fid, 'STARTING POSITION = %0.6f\r\n', HDR.start_position); fprintf(fid, 'FINAL POSITION = %0.6f\r\n', HDR.final_position); fprintf(fid, 'STEP SIZE USED = %0.6f\r\n', HDR.trac_int); fprintf(fid, 'POSITION UNITS = %s\r\n', HDR.pos_units); fprintf(fid, 'NOMINAL FREQUENCY = %0.6f\r\n', HDR.nominal_freq); fprintf(fid, 'ANTENNA SEPARATION = %0.6f\r\n', HDR.ant_sep); fprintf(fid, 'PULSER VOLTAGE (V) = %0.6f\r\n', HDR.pulser_voltage); fprintf(fid, 'NUMBER OF STACKS = %i\r\n', HDR.stacks); fprintf(fid, 'SURVEY MODE = %s\r\n', HDR.survey_mode); % fprintf(fid, 'ODOMETER CAL (t/m) = %0.6f\r\n', HDR.odometer); % fprintf(fid, 'STACKING TYPE = %s\r\n', HDR.stacking_type); % fprintf(fid, 'DVL Serial# = %s\r\n', HDR.dvl_serial); % fprintf(fid, 'Console Serial# = %s\r\n', HDR.console_serial); % fprintf(fid, 'Transmitter Serial#= %s\r\n', HDR.tx_serial); % fprintf(fid, 'Receiver Serial# = %s\r\n', HDR.rx_serial); fclose(fid); % DT1 file fid = fopen([HDR.fname '.dt1'], 'w'); for i = 1 : HDR.num_trac fwrite(fid, HDR.num_each_trac(i), 'real*4'); fwrite(fid, HDR.position(i), 'real*4'); fwrite(fid, HDR.num_samp_each_trac(i), 'real*4'); fwrite(fid, HDR.elevation(i), 'real*4'); fwrite(fid, HDR.not_used1(i), 'real*4'); fwrite(fid, HDR.bytes(i), 'real*4'); fwrite(fid, HDR.time_window_each_trac(i), 'real*4'); fwrite(fid, HDR.stacks_each_trac(i), 'real*4'); fwrite(fid, HDR.rsv_gps_x(i), 'double'); fwrite(fid, HDR.rsv_gps_y(i), 'double'); fwrite(fid, HDR.rsv_gps_z(i), 'double'); fwrite(fid, HDR.rsv_rx_x(i), 'real*4'); fwrite(fid, HDR.rsv_rx_y(i), 'real*4'); fwrite(fid, HDR.rsv_rx_z(i), 'real*4'); fwrite(fid, HDR.rsv_tx_x(i), 'real*4'); fwrite(fid, HDR.rsv_tx_y(i), 'real*4'); fwrite(fid, HDR.rsv_tx_z(i), 'real*4'); fwrite(fid, HDR.time_zero(i), 'real*4'); fwrite(fid, HDR.zero_flag(i), 'real*4'); fwrite(fid, HDR.not_used2(i), 'real*4'); fwrite(fid, HDR.time(i), 'real*4'); fwrite(fid, HDR.comment_flag(i), 'real*4'); fwrite(fid, HDR.comment, 'char*1'); fwrite(fid, data(:, i), 'short'); if mod(i, 100) == 0 waitbar(i / HDR.num_trac, wb, sprintf('Exporting... %.f%%', ... i / HDR.num_trac * 100)) end end fclose(fid); % ========================================================================= % IPRH / IPRB, Impulse Radar ============================================== % IPRH is the header file. % In this file is all the important information such as the number of % samples, traces, measurement intervals can be found. % IPRB is the data file. % This file contains only the data (amplitude values) in a 16 or 32 bit % binary form. Since I have rescaled gprMax output data into a 16bit scale, % this file will also be 16bit. elseif gpr_format == 4 % Header structure HDR.fname = HDR.fname; % File name HDR.hdr_version = 20; % Header version HDR.data_format = 16; % Data format 16 or 32 bit date_time = clock; HDR.date = ([num2str(date_time(1)), '-' ... num2str(date_time(2)), '-' ... num2str(date_time(3))]);% Date HDR.start_time = '00:00:00'; % Measurement start time HDR.stop_time = '00:00:00'; % Measurement end time HDR.antenna = [num2str(HDR.centre_freq) ' MHz']; % Antenna frequency (MHz) HDR.ant_sep = HDR.ant_sep; % Antenna seperation / Tx-Rx distance (m) HDR.num_samp = HDR.num_samp; % Number of samples HDR.signal_pos = 0; % Signal position HDR.clipped_samps = 0; % Clipped samples HDR.runs = 0; % Number of runs HDR.stacks = 1; % Maximum number of stacks HDR.auto_stacks = 1; % Autostacks (1 = On) HDR.samp_freq = HDR.samp_freq; % Sampling frequency (MHz) HDR.time_window = HDR.time_window; % Total time window (ns) HDR.num_trac = HDR.num_trac; % Number of traces HDR.trig_source = 'wheel'; % Trig source (wheel or time) HDR.trac_int_sec = 0; % Trace interval if trig source is time (sec) HDR.trac_int_met = HDR.trac_int; % Trace interval if trig source is wheel (m) HDR.user_trac_int = HDR.trac_int; % User defined trace interval if trig source is wheel (m) HDR.stop_pos = HDR.num_trac * HDR.trac_int; % Stop position (meters or seconds) -> num_trac * trac_int HDR.wheel_name = 'Cart'; % Wheel name HDR.wheel_calibration = 0; % Wheel calibration HDR.zero_lvl = 0; % Zero level HDR.vel = 100; % The soil velocity (Selected in field m/usec). 100 is a random number HDR.preprocessing = 'Unknown Preprocessing'; % Not in use HDR.comment = '----'; % Not in use HDR.antenna_FW = '----'; % Receiver firmware version HDR.antenna_HW = '----'; % Not in use HDR.antenna_FPGA = '----'; % Receiver FPGA version HDR.antenna_serial = '----'; % Receiver serial number HDR.software_version = '----'; % Software version HDR.positioning = 0; % Positioning: (0 = no, 1 = TS, 2 = GPS) HDR.num_channel = 1; % Number of channels HDR.channel_config = 1; % This channel configuration HDR.ch_x_offset = 0; % Channel position relative to ext.positioning HDR.ch_y_offset = 0; % Channel position relative to ext.positioning HDR.meas_direction = 1; % Meas. direction forward or backward HDR.relative_direction = 0; % Direction to RL start(clockwise 360) HDR.relative_distance = 0; % Distance from RL start to cross section HDR.relative_start = 0; % DIstance from profile start to cross section % IPRH file fid = fopen([HDR.fname '.iprh'], 'w'); fprintf(fid, 'HEADER VERSION: %i\r\n', HDR.hdr_version); fprintf(fid, 'DATA VERSION: %i\r\n', HDR.data_format); fprintf(fid, 'DATE: %s\r\n', HDR.date); fprintf(fid, 'START TIME: %s\r\n', HDR.start_time); fprintf(fid, 'STOP TIME: %s\r\n', HDR.stop_time); fprintf(fid, 'ANTENNA: %s\r\n', HDR.antenna); fprintf(fid, 'ANTENNA SEPARATION: %0.6f\r\n', HDR.ant_sep); fprintf(fid, 'SAMPLES: %i\r\n', HDR.num_samp); fprintf(fid, 'SIGNAL POSITION: %0.6f\r\n', HDR.signal_pos); fprintf(fid, 'CLIPPED SAMPLES: %i\r\n', HDR.clipped_samps); fprintf(fid, 'RUNS: %i\r\n', HDR.runs); fprintf(fid, 'MAX STACKS: %i\r\n', HDR.stacks); fprintf(fid, 'AUTOSTACKS: %i\r\n', HDR.auto_stacks); fprintf(fid, 'FREQUENCY: %0.6f\r\n', HDR.samp_freq); fprintf(fid, 'TIMEWINDOW: %0.6f\r\n', HDR.time_window); fprintf(fid, 'LAST TRACE: %i\r\n', HDR.num_trac); fprintf(fid, 'TRIG SOURCE: %s\r\n', HDR.trig_source); fprintf(fid, 'TIME INTERVAL: %0.6f\r\n', HDR.trac_int_sec); fprintf(fid, 'DISTANCE INTERVAL: %0.6f\r\n', HDR.trac_int_met); fprintf(fid, 'USER DISTANCE INTERVAL: %0.6f\r\n', HDR.user_trac_int); fprintf(fid, 'STOP POSITION: %0.6f\r\n', HDR.stop_pos); fprintf(fid, 'WHEEL NAME: %s\r\n', HDR.wheel_name); fprintf(fid, 'WHEEL CALIBRATION: %0.6f\r\n', HDR.wheel_calibration); fprintf(fid, 'ZERO LEVEL: %i\r\n', HDR.zero_lvl); fprintf(fid, 'SOIL VELOCITY: %i\r\n', HDR.vel); fprintf(fid, 'PREPROCESSING: %s\r\n', HDR.preprocessing); fprintf(fid, 'OPERATOR COMMENT: %s\r\n', HDR.comment); fprintf(fid, 'ANTENNA F/W: %s\r\n', HDR.antenna_FW); fprintf(fid, 'ANTENNA H/W: %s\r\n', HDR.antenna_HW); fprintf(fid, 'ANTENNA FPGA: %s\r\n', HDR.antenna_FPGA); fprintf(fid, 'ANTENNA SERIAL: %s\r\n', HDR.antenna_serial); fprintf(fid, 'SOFTWARE VERSION: %s\r\n', HDR.software_version); fprintf(fid, 'POSITIONING: %i\r\n', HDR.positioning); fprintf(fid, 'CHANNELS: %i\r\n', HDR.num_channel); fprintf(fid, 'CHANNEL CONFIGURATION: %i\r\n', HDR.channel_config); fprintf(fid, 'CH_X_OFFSET: %0.6f\r\n', HDR.ch_x_offset); fprintf(fid, 'CH_Y_OFFSET: %0.6f\r\n', HDR.ch_y_offset); fprintf(fid, 'MEASUREMENT DIRECTION: %i\r\n', HDR.meas_direction); fprintf(fid, 'RELATIVE DIRECTION: %i\r\n', HDR.relative_direction); fprintf(fid, 'RELATIVE DISTANCE: %0.6f\r\n', HDR.relative_distance); fprintf(fid, 'RELATIVE START: %0.6f\r\n', HDR.relative_start); fclose(fid); % IPRB file fid = fopen([HDR.fname '.iprb'], 'w'); fwrite(fid, data, 'short'); fclose(fid); end waitbar(1, wb, 'Done!!!'); pause(1); close(wb);