Further refinements.

这个提交包含在:
Craig Warren
2022-01-20 12:25:16 +00:00
父节点 003df06143
当前提交 fe72083adb

查看文件

@@ -9,12 +9,12 @@ from scipy.io import loadmat
# Title and file path for FDTD model output
modeltitle = 'rtm_model'
modeltitle = 'bgr_6'
fn = Path(__file__)
fn = Path(fn.parent, modeltitle)
# Load B-scan data to be migrated
matfile = Path(str(Path(__file__).parent.resolve()), 'bgr_6.mat')
matfile = Path(str(Path(__file__).parent.resolve()), modeltitle + '.mat')
matcontents = loadmat(str(matfile))
data = matcontents['data']
data = np.transpose(data) # Transpose to rows: samples, cols: traces
@@ -32,7 +32,7 @@ v = 0.12e9
depth = v * maxtime / 2
# FDTD discretisation, 2D domain dims, and time window
dl = 0.005 # metres
dl = 0.001 # metres
pml_cells = 10
extra_cells = 10 # Allow some extra cells after PML before placing sources
x_cells = data.shape[1] + 2 * pml_cells + 2 * extra_cells
@@ -42,23 +42,28 @@ y = y_cells * dl
z_cells = int(np.ceil(depth / dl) + 2 * pml_cells + 2 * extra_cells)
z = z_cells * dl
# Can build FDTD model from:
# 1. Matrix of velocity/permittivity, then write to file, and import
# 2. Directly using geometry primitives, i.e. boxes, etc...
# Option 1:
# Holds permittivity field to import into FDTD model
er = np.ones((x_cells, y_cells, z_cells - (pml_cells + extra_cells)))
er_value = np.around(4 * (c / v)**2, decimals=2) # 4xEr as velocity doubled
er = er * er_value
mat_ers = np.unique(er)
# er = np.ones((x_cells, y_cells, z_cells - (pml_cells + extra_cells)))
# er_value = np.around(4 * (c / v)**2, decimals=2) # 4xEr as velocity doubled
# er = er * er_value
# mat_ers = np.unique(er)
# Write materials text file
with open(fn.with_suffix('.txt'), 'w') as fmaterials:
for i, mat_er in enumerate(mat_ers):
er[er==mat_er] = i
fmaterials.write(f'#material: {mat_er} 0 1 0 mat{i}\n')
# with open(fn.with_suffix('.txt'), 'w') as fmaterials:
# for i, mat_er in enumerate(mat_ers):
# er[er==mat_er] = i
# fmaterials.write(f'#material: {mat_er} 0 1 0 mat{i}\n')
# Write permittivity HDF5 file
with h5py.File(fn.with_suffix('.h5'), 'w') as fdata:
fdata.attrs['Title'] = modeltitle
fdata.attrs['dx_dy_dz'] = (dl, dl, dl)
fdata['/data'] = er.astype('int16')
# # Write permittivity HDF5 file
# with h5py.File(fn.with_suffix('.h5'), 'w') as fdata:
# fdata.attrs['Title'] = modeltitle
# fdata.attrs['dx_dy_dz'] = (dl, dl, dl)
# fdata['/data'] = er.astype('int16')
# Build FDTD model
scene = gprMax.Scene()
@@ -73,8 +78,19 @@ scene.add(domain)
scene.add(dxdydz)
scene.add(time_window)
go = gprMax.GeometryObjectsRead(p1=(0, 0, 0), geofile=fn.with_suffix('.h5'),
matfile=fn.with_suffix('.txt'))
# Option 1
# go = gprMax.GeometryObjectsRead(p1=(0, 0, 0), geofile=fn.with_suffix('.h5'),
# matfile=fn.with_suffix('.txt'))
# scene.add(go)
# Option 2
mat = gprMax.Material(er=np.around(4 * (c / v)**2, decimals=2), se=0, mr=1,
sm=0, id='mat1')
scene.add(mat)
b1 = gprMax.Box(p1=(0, 0, 0), p2=(domain.props.p1[0], dl,
domain.props.p1[2] - (pml_cells + extra_cells) * dl),
material_id='mat1')
scene.add(b1)
# Specify waveforms and sources from reversed B-scan data
for i in range(data.shape[1]):
@@ -105,12 +121,11 @@ snap = gprMax.Snapshot(p1=((pml_cells + extra_cells) * dl,
filename=fn.with_suffix('').parts[-1] + '_rtm_result',
fileext=fileext, time=maxtime)
scene.add(go)
scene.add(gv)
scene.add(snap)
# Run FDTD model
#gprMax.run(scenes=[scene], n=1, geometry_only=False, outputfile=fn)
gprMax.run(scenes=[scene], n=1, geometry_only=False, outputfile=fn)
# Open RTM results file
filename = Path(str(fn) + '_snaps', fn.with_suffix('').parts[-1] + '_rtm_result' + fileext)
@@ -125,7 +140,6 @@ outputdata = outputdata.squeeze()
outputdata = outputdata.transpose()
# Plot RTM result
min_max_plt = (-1000, 1000)
fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, num=str(filename),
figsize=(15, 10), facecolor='w', edgecolor='w')
orig_plt = ax1.imshow(data, extent=[0, data.shape[1] * trac_int,