你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-07 23:14:03 +08:00
Added a pre-commit config file and reformatted all the files accordingly by using it.
这个提交包含在:
@@ -253,7 +253,7 @@ where :math:`dt` is the temporal resolution (timestep) of the model.
|
||||
Example of the ``impulse`` waveform - time domain.
|
||||
|
||||
.. note::
|
||||
* The impulse waveform should be used with care!
|
||||
* The impulse response of a model, i.e. when the source in the model is excited using the impulse waveform, is not likely to be useful when viewed in isolation.
|
||||
* The impulse waveform should be used with care!
|
||||
* The impulse response of a model, i.e. when the source in the model is excited using the impulse waveform, is not likely to be useful when viewed in isolation.
|
||||
* However, the impulse response of a model can be convolved with different inputs (waveforms) to provide valid outputs without having to run a separate model for each different input (waveform).
|
||||
* The impulse response of the model can only be legitimately convolved with inputs (waveforms) that respect the limits of numerical dispersion in the original model, i.e. if a waveform contains frequencies that will not propagate correctly (due to numerical dispersion) in the original model, then the convolution of the waveform with the impulse response will not be valid.
|
||||
* The impulse response of the model can only be legitimately convolved with inputs (waveforms) that respect the limits of numerical dispersion in the original model, i.e. if a waveform contains frequencies that will not propagate correctly (due to numerical dispersion) in the original model, then the convolution of the waveform with the impulse response will not be valid.
|
||||
|
@@ -48,55 +48,53 @@ def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False, save=False):
|
||||
file = Path(filename)
|
||||
|
||||
# Open output file and read iterations
|
||||
f = h5py.File(file, 'r')
|
||||
f = h5py.File(file, "r")
|
||||
|
||||
# Paths to grid(s) to traverse for outputs
|
||||
paths = ['/']
|
||||
paths = ["/"]
|
||||
|
||||
# Check if any subgrids and add path(s)
|
||||
is_subgrids = "/subgrids" in f
|
||||
if is_subgrids:
|
||||
paths = paths + ['/subgrids/' + path + '/' for path in f['/subgrids'].keys()]
|
||||
paths = paths + ["/subgrids/" + path + "/" for path in f["/subgrids"].keys()]
|
||||
|
||||
# Get number of receivers in grid(s)
|
||||
nrxs = []
|
||||
for path in paths:
|
||||
if f[path].attrs['nrx'] > 0:
|
||||
nrxs.append(f[path].attrs['nrx'])
|
||||
if f[path].attrs["nrx"] > 0:
|
||||
nrxs.append(f[path].attrs["nrx"])
|
||||
else:
|
||||
paths.remove(path)
|
||||
|
||||
# Check there are any receivers
|
||||
if not paths:
|
||||
logger.exception(f'No receivers found in {file}')
|
||||
logger.exception(f"No receivers found in {file}")
|
||||
raise ValueError
|
||||
|
||||
# Loop through all grids
|
||||
for path in paths:
|
||||
iterations = f[path].attrs['Iterations']
|
||||
nrx = f[path].attrs['nrx']
|
||||
dt = f[path].attrs['dt']
|
||||
iterations = f[path].attrs["Iterations"]
|
||||
nrx = f[path].attrs["nrx"]
|
||||
dt = f[path].attrs["dt"]
|
||||
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
|
||||
|
||||
# Check for single output component when doing a FFT
|
||||
if fft:
|
||||
if not len(outputs) == 1:
|
||||
logger.exception('A single output must be specified when using ' +
|
||||
'the -fft option')
|
||||
logger.exception("A single output must be specified when using " + "the -fft option")
|
||||
raise ValueError
|
||||
|
||||
# New plot for each receiver
|
||||
for rx in range(1, nrx + 1):
|
||||
rxpath = path + 'rxs/rx' + str(rx) + '/'
|
||||
rxpath = path + "rxs/rx" + str(rx) + "/"
|
||||
availableoutputs = list(f[rxpath].keys())
|
||||
|
||||
# If only a single output is required, create one subplot
|
||||
if len(outputs) == 1:
|
||||
|
||||
# Check for polarity of output and if requested output is in file
|
||||
if outputs[0][-1] == '-':
|
||||
if outputs[0][-1] == "-":
|
||||
polarity = -1
|
||||
outputtext = '-' + outputs[0][0:-1]
|
||||
outputtext = "-" + outputs[0][0:-1]
|
||||
output = outputs[0][0:-1]
|
||||
else:
|
||||
polarity = 1
|
||||
@@ -104,9 +102,11 @@ def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False, save=False):
|
||||
output = outputs[0]
|
||||
|
||||
if output not in availableoutputs:
|
||||
logger.exception(f"{output} output requested to plot, but " +
|
||||
f"the available output for receiver 1 is " +
|
||||
f"{', '.join(availableoutputs)}")
|
||||
logger.exception(
|
||||
f"{output} output requested to plot, but "
|
||||
+ f"the available output for receiver 1 is "
|
||||
+ f"{', '.join(availableoutputs)}"
|
||||
)
|
||||
raise ValueError
|
||||
|
||||
outputdata = f[rxpath + output][:] * polarity
|
||||
@@ -118,7 +118,7 @@ def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False, save=False):
|
||||
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
|
||||
|
||||
# Set plotting range to -60dB from maximum power or 4 times
|
||||
# frequency at maximum power
|
||||
# frequency at maximum power
|
||||
try:
|
||||
pltrange = np.where(power[freqmaxpower:] < -60)[0][0] + freqmaxpower + 1
|
||||
except:
|
||||
@@ -127,82 +127,91 @@ def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False, save=False):
|
||||
pltrange = np.s_[0:pltrange]
|
||||
|
||||
# Plot time history of output component
|
||||
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2,
|
||||
num=rxpath + ' - ' + f[rxpath].attrs['Name'],
|
||||
figsize=(20, 10), facecolor='w',
|
||||
edgecolor='w')
|
||||
line1 = ax1.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax1.set_xlabel('Time [s]')
|
||||
ax1.set_ylabel(outputtext + ' field strength [V/m]')
|
||||
fig, (ax1, ax2) = plt.subplots(
|
||||
nrows=1,
|
||||
ncols=2,
|
||||
num=rxpath + " - " + f[rxpath].attrs["Name"],
|
||||
figsize=(20, 10),
|
||||
facecolor="w",
|
||||
edgecolor="w",
|
||||
)
|
||||
line1 = ax1.plot(time, outputdata, "r", lw=2, label=outputtext)
|
||||
ax1.set_xlabel("Time [s]")
|
||||
ax1.set_ylabel(outputtext + " field strength [V/m]")
|
||||
ax1.set_xlim([0, np.amax(time)])
|
||||
ax1.grid(which='both', axis='both', linestyle='-.')
|
||||
ax1.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
# Plot frequency spectra
|
||||
markerline, stemlines, baseline = ax2.stem(freqs[pltrange],
|
||||
power[pltrange], '-.',
|
||||
use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'r')
|
||||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
line2 = ax2.plot(freqs[pltrange], power[pltrange], 'r', lw=2)
|
||||
ax2.set_xlabel('Frequency [Hz]')
|
||||
ax2.set_ylabel('Power [dB]')
|
||||
ax2.grid(which='both', axis='both', linestyle='-.')
|
||||
markerline, stemlines, baseline = ax2.stem(
|
||||
freqs[pltrange], power[pltrange], "-.", use_line_collection=True
|
||||
)
|
||||
plt.setp(baseline, "linewidth", 0)
|
||||
plt.setp(stemlines, "color", "r")
|
||||
plt.setp(markerline, "markerfacecolor", "r", "markeredgecolor", "r")
|
||||
line2 = ax2.plot(freqs[pltrange], power[pltrange], "r", lw=2)
|
||||
ax2.set_xlabel("Frequency [Hz]")
|
||||
ax2.set_ylabel("Power [dB]")
|
||||
ax2.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
# Change colours and labels for magnetic field components
|
||||
# Change colours and labels for magnetic field components
|
||||
# or currents
|
||||
if 'H' in outputs[0]:
|
||||
plt.setp(line1, color='g')
|
||||
plt.setp(line2, color='g')
|
||||
plt.setp(ax1, ylabel=outputtext + ' field strength [A/m]')
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g',
|
||||
'markeredgecolor', 'g')
|
||||
elif 'I' in outputs[0]:
|
||||
plt.setp(line1, color='b')
|
||||
plt.setp(line2, color='b')
|
||||
plt.setp(ax1, ylabel=outputtext + ' current [A]')
|
||||
plt.setp(stemlines, 'color', 'b')
|
||||
plt.setp(markerline, 'markerfacecolor', 'b',
|
||||
'markeredgecolor', 'b')
|
||||
if "H" in outputs[0]:
|
||||
plt.setp(line1, color="g")
|
||||
plt.setp(line2, color="g")
|
||||
plt.setp(ax1, ylabel=outputtext + " field strength [A/m]")
|
||||
plt.setp(stemlines, "color", "g")
|
||||
plt.setp(markerline, "markerfacecolor", "g", "markeredgecolor", "g")
|
||||
elif "I" in outputs[0]:
|
||||
plt.setp(line1, color="b")
|
||||
plt.setp(line2, color="b")
|
||||
plt.setp(ax1, ylabel=outputtext + " current [A]")
|
||||
plt.setp(stemlines, "color", "b")
|
||||
plt.setp(markerline, "markerfacecolor", "b", "markeredgecolor", "b")
|
||||
|
||||
plt.show()
|
||||
|
||||
# Plotting if no FFT required
|
||||
else:
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]',
|
||||
ylabel=outputtext + ' field strength [V/m]'),
|
||||
num=rxpath + ' - ' + f[rxpath].attrs['Name'],
|
||||
figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
line = ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
fig, ax = plt.subplots(
|
||||
subplot_kw=dict(xlabel="Time [s]", ylabel=outputtext + " field strength [V/m]"),
|
||||
num=rxpath + " - " + f[rxpath].attrs["Name"],
|
||||
figsize=(20, 10),
|
||||
facecolor="w",
|
||||
edgecolor="w",
|
||||
)
|
||||
line = ax.plot(time, outputdata, "r", lw=2, label=outputtext)
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
# ax.set_ylim([-15, 20])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
ax.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
if 'H' in output:
|
||||
plt.setp(line, color='g')
|
||||
plt.setp(ax, ylabel=outputtext + ', field strength [A/m]')
|
||||
elif 'I' in output:
|
||||
plt.setp(line, color='b')
|
||||
plt.setp(ax, ylabel=outputtext + ', current [A]')
|
||||
if "H" in output:
|
||||
plt.setp(line, color="g")
|
||||
plt.setp(ax, ylabel=outputtext + ", field strength [A/m]")
|
||||
elif "I" in output:
|
||||
plt.setp(line, color="b")
|
||||
plt.setp(ax, ylabel=outputtext + ", current [A]")
|
||||
|
||||
# If multiple outputs required, create all nine subplots and
|
||||
# If multiple outputs required, create all nine subplots and
|
||||
# populate only the specified ones
|
||||
else:
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]'),
|
||||
num=rxpath + ' - ' + f[rxpath].attrs['Name'],
|
||||
figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
fig, ax = plt.subplots(
|
||||
subplot_kw=dict(xlabel="Time [s]"),
|
||||
num=rxpath + " - " + f[rxpath].attrs["Name"],
|
||||
figsize=(20, 10),
|
||||
facecolor="w",
|
||||
edgecolor="w",
|
||||
)
|
||||
if len(outputs) == 9:
|
||||
gs = gridspec.GridSpec(3, 3, hspace=0.3, wspace=0.3)
|
||||
else:
|
||||
gs = gridspec.GridSpec(3, 2, hspace=0.3, wspace=0.3)
|
||||
|
||||
for output in outputs:
|
||||
# Check for polarity of output and if requested output
|
||||
# Check for polarity of output and if requested output
|
||||
# is in file
|
||||
if output[-1] == 'm':
|
||||
if output[-1] == "m":
|
||||
polarity = -1
|
||||
outputtext = '-' + output[0:-1]
|
||||
outputtext = "-" + output[0:-1]
|
||||
output = output[0:-1]
|
||||
else:
|
||||
polarity = 1
|
||||
@@ -210,93 +219,115 @@ def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False, save=False):
|
||||
|
||||
# Check if requested output is in file
|
||||
if output not in availableoutputs:
|
||||
logger.exception(f"Output(s) requested to plot: " +
|
||||
f"{', '.join(outputs)}, but available output(s) " +
|
||||
f"for receiver {rx} in the file: " +
|
||||
f"{', '.join(availableoutputs)}")
|
||||
logger.exception(
|
||||
f"Output(s) requested to plot: "
|
||||
+ f"{', '.join(outputs)}, but available output(s) "
|
||||
+ f"for receiver {rx} in the file: "
|
||||
+ f"{', '.join(availableoutputs)}"
|
||||
)
|
||||
raise ValueError
|
||||
|
||||
outputdata = f[rxpath + output][:] * polarity
|
||||
|
||||
if output == 'Ex':
|
||||
if output == "Ex":
|
||||
ax = plt.subplot(gs[0, 0])
|
||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||
ax.plot(time, outputdata, "r", lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ", field strength [V/m]")
|
||||
# ax.set_ylim([-15, 20])
|
||||
elif output == 'Ey':
|
||||
elif output == "Ey":
|
||||
ax = plt.subplot(gs[1, 0])
|
||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||
ax.plot(time, outputdata, "r", lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ", field strength [V/m]")
|
||||
# ax.set_ylim([-15, 20])
|
||||
elif output == 'Ez':
|
||||
elif output == "Ez":
|
||||
ax = plt.subplot(gs[2, 0])
|
||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||
ax.plot(time, outputdata, "r", lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ", field strength [V/m]")
|
||||
# ax.set_ylim([-15, 20])
|
||||
elif output == 'Hx':
|
||||
elif output == "Hx":
|
||||
ax = plt.subplot(gs[0, 1])
|
||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||
ax.plot(time, outputdata, "g", lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ", field strength [A/m]")
|
||||
# ax.set_ylim([-0.03, 0.03])
|
||||
elif output == 'Hy':
|
||||
elif output == "Hy":
|
||||
ax = plt.subplot(gs[1, 1])
|
||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||
ax.plot(time, outputdata, "g", lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ", field strength [A/m]")
|
||||
# ax.set_ylim([-0.03, 0.03])
|
||||
elif output == 'Hz':
|
||||
elif output == "Hz":
|
||||
ax = plt.subplot(gs[2, 1])
|
||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||
ax.plot(time, outputdata, "g", lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ", field strength [A/m]")
|
||||
# ax.set_ylim([-0.03, 0.03])
|
||||
elif output == 'Ix':
|
||||
elif output == "Ix":
|
||||
ax = plt.subplot(gs[0, 2])
|
||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', current [A]')
|
||||
elif output == 'Iy':
|
||||
ax.plot(time, outputdata, "b", lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ", current [A]")
|
||||
elif output == "Iy":
|
||||
ax = plt.subplot(gs[1, 2])
|
||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', current [A]')
|
||||
elif output == 'Iz':
|
||||
ax.plot(time, outputdata, "b", lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ", current [A]")
|
||||
elif output == "Iz":
|
||||
ax = plt.subplot(gs[2, 2])
|
||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', current [A]')
|
||||
ax.plot(time, outputdata, "b", lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ", current [A]")
|
||||
for ax in fig.axes:
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
ax.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
f.close()
|
||||
|
||||
if save:
|
||||
# Save a PDF of the figure
|
||||
fig.savefig(filename[:-3] + '.pdf', dpi=None, format='pdf',
|
||||
bbox_inches='tight', pad_inches=0.1)
|
||||
fig.savefig(filename[:-3] + ".pdf", dpi=None, format="pdf", bbox_inches="tight", pad_inches=0.1)
|
||||
# Save a PNG of the figure
|
||||
# fig.savefig(filename[:-3] + '.png', dpi=150, format='png',
|
||||
# fig.savefig(filename[:-3] + '.png', dpi=150, format='png',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
return plt
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='Plots electric and magnetic fields and ' +
|
||||
'currents from all receiver points in the given output file. ' +
|
||||
'Each receiver point is plotted in a new figure window.',
|
||||
usage='cd gprMax; python -m toolboxes.Plotting.plot_Ascan outputfile')
|
||||
parser.add_argument('outputfile', help='name of output file including path')
|
||||
parser.add_argument('--outputs', help='outputs to be plotted',
|
||||
default=Rx.defaultoutputs,
|
||||
choices=['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz',
|
||||
'Ix', 'Iy', 'Iz', 'Ex-', 'Ey-', 'Ez-',
|
||||
'Hx-', 'Hy-', 'Hz-', 'Ix-', 'Iy-', 'Iz-'],
|
||||
nargs='+')
|
||||
parser.add_argument('-fft', action='store_true', default=False,
|
||||
help='plot FFT (single output must be specified)')
|
||||
parser.add_argument('-save', action='store_true', default=False,
|
||||
help='save plot directly to file, i.e. do not display')
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Plots electric and magnetic fields and "
|
||||
+ "currents from all receiver points in the given output file. "
|
||||
+ "Each receiver point is plotted in a new figure window.",
|
||||
usage="cd gprMax; python -m toolboxes.Plotting.plot_Ascan outputfile",
|
||||
)
|
||||
parser.add_argument("outputfile", help="name of output file including path")
|
||||
parser.add_argument(
|
||||
"--outputs",
|
||||
help="outputs to be plotted",
|
||||
default=Rx.defaultoutputs,
|
||||
choices=[
|
||||
"Ex",
|
||||
"Ey",
|
||||
"Ez",
|
||||
"Hx",
|
||||
"Hy",
|
||||
"Hz",
|
||||
"Ix",
|
||||
"Iy",
|
||||
"Iz",
|
||||
"Ex-",
|
||||
"Ey-",
|
||||
"Ez-",
|
||||
"Hx-",
|
||||
"Hy-",
|
||||
"Hz-",
|
||||
"Ix-",
|
||||
"Iy-",
|
||||
"Iz-",
|
||||
],
|
||||
nargs="+",
|
||||
)
|
||||
parser.add_argument("-fft", action="store_true", default=False, help="plot FFT (single output must be specified)")
|
||||
parser.add_argument(
|
||||
"-save", action="store_true", default=False, help="save plot directly to file, i.e. do not display"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
plthandle = mpl_plot(args.outputfile, args.outputs, fft=args.fft, save=args.save)
|
||||
|
||||
plthandle.show()
|
||||
|
||||
plthandle.show()
|
||||
|
@@ -46,59 +46,69 @@ def mpl_plot(filename, outputdata, dt, rxnumber, rxcomponent, save=False):
|
||||
|
||||
file = Path(filename)
|
||||
|
||||
fig = plt.figure(num=file.stem + ' - rx' + str(rxnumber), figsize=(20, 10),
|
||||
facecolor='w', edgecolor='w')
|
||||
plt.imshow(outputdata, extent=[0, outputdata.shape[1], outputdata.shape[0] * dt, 0],
|
||||
interpolation='nearest', aspect='auto', cmap='seismic',
|
||||
vmin=-np.amax(np.abs(outputdata)), vmax=np.amax(np.abs(outputdata)))
|
||||
plt.xlabel('Trace number')
|
||||
plt.ylabel('Time [s]')
|
||||
fig = plt.figure(num=file.stem + " - rx" + str(rxnumber), figsize=(20, 10), facecolor="w", edgecolor="w")
|
||||
plt.imshow(
|
||||
outputdata,
|
||||
extent=[0, outputdata.shape[1], outputdata.shape[0] * dt, 0],
|
||||
interpolation="nearest",
|
||||
aspect="auto",
|
||||
cmap="seismic",
|
||||
vmin=-np.amax(np.abs(outputdata)),
|
||||
vmax=np.amax(np.abs(outputdata)),
|
||||
)
|
||||
plt.xlabel("Trace number")
|
||||
plt.ylabel("Time [s]")
|
||||
|
||||
# Grid properties
|
||||
ax = fig.gca()
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
ax.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
cb = plt.colorbar()
|
||||
if 'E' in rxcomponent:
|
||||
cb.set_label('Field strength [V/m]')
|
||||
elif 'H' in rxcomponent:
|
||||
cb.set_label('Field strength [A/m]')
|
||||
elif 'I' in rxcomponent:
|
||||
cb.set_label('Current [A]')
|
||||
if "E" in rxcomponent:
|
||||
cb.set_label("Field strength [V/m]")
|
||||
elif "H" in rxcomponent:
|
||||
cb.set_label("Field strength [A/m]")
|
||||
elif "I" in rxcomponent:
|
||||
cb.set_label("Current [A]")
|
||||
|
||||
if save:
|
||||
# Save a PDF of the figure
|
||||
fig.savefig(filename[:-3] + '.pdf', dpi=None, format='pdf',
|
||||
bbox_inches='tight', pad_inches=0.1)
|
||||
fig.savefig(filename[:-3] + ".pdf", dpi=None, format="pdf", bbox_inches="tight", pad_inches=0.1)
|
||||
# Save a PNG of the figure
|
||||
# fig.savefig(filename[:-3] + '.png', dpi=150, format='png',
|
||||
# fig.savefig(filename[:-3] + '.png', dpi=150, format='png',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
return plt
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='Plots a B-scan image.',
|
||||
usage='cd gprMax; python -m toolboxes.Plotting.plot_Bscan outputfile output')
|
||||
parser.add_argument('outputfile', help='name of output file including path')
|
||||
parser.add_argument('rx_component', help='name of output component to be plotted',
|
||||
choices=['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz', 'Ix', 'Iy', 'Iz'])
|
||||
parser.add_argument('-gather', action='store_true', default=False,
|
||||
help='gather together all receiver outputs in file')
|
||||
parser.add_argument('-save', action='store_true', default=False,
|
||||
help='save plot directly to file, i.e. do not display')
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Plots a B-scan image.",
|
||||
usage="cd gprMax; python -m toolboxes.Plotting.plot_Bscan outputfile output",
|
||||
)
|
||||
parser.add_argument("outputfile", help="name of output file including path")
|
||||
parser.add_argument(
|
||||
"rx_component",
|
||||
help="name of output component to be plotted",
|
||||
choices=["Ex", "Ey", "Ez", "Hx", "Hy", "Hz", "Ix", "Iy", "Iz"],
|
||||
)
|
||||
parser.add_argument(
|
||||
"-gather", action="store_true", default=False, help="gather together all receiver outputs in file"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-save", action="store_true", default=False, help="save plot directly to file, i.e. do not display"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Open output file and read number of outputs (receivers)
|
||||
f = h5py.File(args.outputfile, 'r')
|
||||
nrx = f.attrs['nrx']
|
||||
f = h5py.File(args.outputfile, "r")
|
||||
nrx = f.attrs["nrx"]
|
||||
f.close()
|
||||
|
||||
# Check there are any receivers
|
||||
if nrx == 0:
|
||||
logger.exception(f'No receivers found in {args.outputfile}')
|
||||
logger.exception(f"No receivers found in {args.outputfile}")
|
||||
raise ValueError
|
||||
|
||||
for rx in range(1, nrx + 1):
|
||||
@@ -108,12 +118,10 @@ if __name__ == "__main__":
|
||||
rxsgather = outputdata
|
||||
rxsgather = np.column_stack((rxsgather, outputdata))
|
||||
else:
|
||||
plthandle = mpl_plot(args.outputfile, outputdata, dt, rx,
|
||||
args.rx_component, save=args.save)
|
||||
plthandle = mpl_plot(args.outputfile, outputdata, dt, rx, args.rx_component, save=args.save)
|
||||
|
||||
# Plot all receivers from single output file together if required
|
||||
if args.gather:
|
||||
plthandle = mpl_plot(args.outputfile, rxsgather, dt, rx,
|
||||
args.rx_component, save=args.save)
|
||||
plthandle = mpl_plot(args.outputfile, rxsgather, dt, rx, args.rx_component, save=args.save)
|
||||
|
||||
plthandle.show()
|
||||
|
@@ -45,65 +45,67 @@ def calculate_antenna_params(filename, tltxnumber=1, tlrxnumber=None, rxnumber=N
|
||||
|
||||
# Open output file and read some attributes
|
||||
file = Path(filename)
|
||||
f = h5py.File(file, 'r')
|
||||
dxdydz = f.attrs['dx_dy_dz']
|
||||
dt = f.attrs['dt']
|
||||
iterations = f.attrs['Iterations']
|
||||
f = h5py.File(file, "r")
|
||||
dxdydz = f.attrs["dx_dy_dz"]
|
||||
dt = f.attrs["dt"]
|
||||
iterations = f.attrs["Iterations"]
|
||||
|
||||
# Calculate time array and frequency bin spacing
|
||||
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
|
||||
df = 1 / np.amax(time)
|
||||
|
||||
logger.info(f'Time window: {np.amax(time):g} s ({iterations} iterations)')
|
||||
logger.info(f'Time step: {dt:g} s')
|
||||
logger.info(f'Frequency bin spacing: {df:g} Hz')
|
||||
logger.info(f"Time window: {np.amax(time):g} s ({iterations} iterations)")
|
||||
logger.info(f"Time step: {dt:g} s")
|
||||
logger.info(f"Frequency bin spacing: {df:g} Hz")
|
||||
|
||||
# Read/calculate voltages and currents from transmitter antenna
|
||||
tltxpath = '/tls/tl' + str(tltxnumber) + '/'
|
||||
tltxpath = "/tls/tl" + str(tltxnumber) + "/"
|
||||
|
||||
# Incident voltages/currents
|
||||
Vinc = f[tltxpath + 'Vinc'][:]
|
||||
Iinc = f[tltxpath + 'Iinc'][:]
|
||||
Vinc = f[tltxpath + "Vinc"][:]
|
||||
Iinc = f[tltxpath + "Iinc"][:]
|
||||
|
||||
# Total (incident + reflected) voltages/currents
|
||||
Vtotal = f[tltxpath + 'Vtotal'][:]
|
||||
Itotal = f[tltxpath + 'Itotal'][:]
|
||||
Vtotal = f[tltxpath + "Vtotal"][:]
|
||||
Itotal = f[tltxpath + "Itotal"][:]
|
||||
|
||||
# Reflected voltages/currents
|
||||
Vref = Vtotal - Vinc
|
||||
Iref = Itotal - Iinc
|
||||
|
||||
# If a receiver antenna is used (with a transmission line or receiver),
|
||||
# If a receiver antenna is used (with a transmission line or receiver),
|
||||
# get received voltage for s21
|
||||
if tlrxnumber:
|
||||
tlrxpath = '/tls/tl' + str(tlrxnumber) + '/'
|
||||
Vrec = f[tlrxpath + 'Vtotal'][:]
|
||||
tlrxpath = "/tls/tl" + str(tlrxnumber) + "/"
|
||||
Vrec = f[tlrxpath + "Vtotal"][:]
|
||||
|
||||
elif rxnumber:
|
||||
rxpath = '/rxs/rx' + str(rxnumber) + '/'
|
||||
rxpath = "/rxs/rx" + str(rxnumber) + "/"
|
||||
availableoutputs = list(f[rxpath].keys())
|
||||
|
||||
if rxcomponent not in availableoutputs:
|
||||
logger.exception(f"{rxcomponent} output requested, but the available " +
|
||||
f"output for receiver {rxnumber} is " +
|
||||
f"{', '.join(availableoutputs)}")
|
||||
logger.exception(
|
||||
f"{rxcomponent} output requested, but the available "
|
||||
+ f"output for receiver {rxnumber} is "
|
||||
+ f"{', '.join(availableoutputs)}"
|
||||
)
|
||||
raise ValueError
|
||||
|
||||
rxpath += rxcomponent
|
||||
|
||||
# Received voltage
|
||||
if rxcomponent == 'Ex':
|
||||
if rxcomponent == "Ex":
|
||||
Vrec = f[rxpath][:] * -1 * dxdydz[0]
|
||||
elif rxcomponent == 'Ey':
|
||||
elif rxcomponent == "Ey":
|
||||
Vrec = f[rxpath][:] * -1 * dxdydz[1]
|
||||
elif rxcomponent == 'Ez':
|
||||
elif rxcomponent == "Ez":
|
||||
Vrec = f[rxpath][:] * -1 * dxdydz[2]
|
||||
f.close()
|
||||
|
||||
# Frequency bins
|
||||
freqs = np.fft.fftfreq(Vinc.size, d=dt)
|
||||
|
||||
# Delay correction - current lags voltage, so delay voltage to match
|
||||
# Delay correction - current lags voltage, so delay voltage to match
|
||||
# current timestep
|
||||
delaycorrection = np.exp(1j * 2 * np.pi * freqs * (dt / 2))
|
||||
|
||||
@@ -119,7 +121,7 @@ def calculate_antenna_params(filename, tltxnumber=1, tlrxnumber=None, rxnumber=N
|
||||
yin = np.fft.fft(Itotal) / (np.fft.fft(Vtotal) * delaycorrection)
|
||||
|
||||
# Convert to decibels (ignore warning from taking a log of any zero values)
|
||||
with np.errstate(divide='ignore'):
|
||||
with np.errstate(divide="ignore"):
|
||||
Vincp = 20 * np.log10(np.abs((np.fft.fft(Vinc) * delaycorrection)))
|
||||
Iincp = 20 * np.log10(np.abs(np.fft.fft(Iinc)))
|
||||
Vrefp = 20 * np.log10(np.abs((np.fft.fft(Vref) * delaycorrection)))
|
||||
@@ -138,23 +140,56 @@ def calculate_antenna_params(filename, tltxnumber=1, tlrxnumber=None, rxnumber=N
|
||||
s11[np.invert(np.isfinite(s11))] = 0
|
||||
|
||||
# Create dictionary of antenna parameters
|
||||
antennaparams = {'time': time, 'freqs': freqs, 'Vinc': Vinc, 'Vincp': Vincp,
|
||||
'Iinc': Iinc, 'Iincp': Iincp, 'Vref': Vref, 'Vrefp': Vrefp,
|
||||
'Iref': Iref, 'Irefp': Irefp, 'Vtotal': Vtotal,
|
||||
'Vtotalp': Vtotalp, 'Itotal': Itotal, 'Itotalp': Itotalp,
|
||||
's11': s11, 'zin': zin, 'yin': yin}
|
||||
antennaparams = {
|
||||
"time": time,
|
||||
"freqs": freqs,
|
||||
"Vinc": Vinc,
|
||||
"Vincp": Vincp,
|
||||
"Iinc": Iinc,
|
||||
"Iincp": Iincp,
|
||||
"Vref": Vref,
|
||||
"Vrefp": Vrefp,
|
||||
"Iref": Iref,
|
||||
"Irefp": Irefp,
|
||||
"Vtotal": Vtotal,
|
||||
"Vtotalp": Vtotalp,
|
||||
"Itotal": Itotal,
|
||||
"Itotalp": Itotalp,
|
||||
"s11": s11,
|
||||
"zin": zin,
|
||||
"yin": yin,
|
||||
}
|
||||
if tlrxnumber or rxnumber:
|
||||
with np.errstate(divide='ignore'): # Ignore warning from taking a log of any zero values
|
||||
with np.errstate(divide="ignore"): # Ignore warning from taking a log of any zero values
|
||||
s21 = 20 * np.log10(s21)
|
||||
s21[np.invert(np.isfinite(s21))] = 0
|
||||
antennaparams['s21'] = s21
|
||||
antennaparams["s21"] = s21
|
||||
|
||||
return antennaparams
|
||||
|
||||
|
||||
def mpl_plot(filename, time, freqs, Vinc, Vincp, Iinc, Iincp, Vref, Vrefp,
|
||||
Iref, Irefp, Vtotal, Vtotalp, Itotal, Itotalp, s11, zin, yin,
|
||||
s21=None, save=False):
|
||||
def mpl_plot(
|
||||
filename,
|
||||
time,
|
||||
freqs,
|
||||
Vinc,
|
||||
Vincp,
|
||||
Iinc,
|
||||
Iincp,
|
||||
Vref,
|
||||
Vrefp,
|
||||
Iref,
|
||||
Irefp,
|
||||
Vtotal,
|
||||
Vtotalp,
|
||||
Itotal,
|
||||
Itotalp,
|
||||
s11,
|
||||
zin,
|
||||
yin,
|
||||
s21=None,
|
||||
save=False,
|
||||
):
|
||||
"""Plots antenna parameters - incident, reflected and total voltages and
|
||||
currents; s11, (s21) and input impedance.
|
||||
|
||||
@@ -162,14 +197,14 @@ def mpl_plot(filename, time, freqs, Vinc, Vincp, Iinc, Iincp, Vref, Vrefp,
|
||||
filename: string of filename (including path) of output file.
|
||||
time: array of simulation time.
|
||||
freq: array of frequencies for FFTs.
|
||||
Vinc, Vincp, Iinc, Iincp: arrays of time and frequency domain
|
||||
representations of incident voltage and
|
||||
Vinc, Vincp, Iinc, Iincp: arrays of time and frequency domain
|
||||
representations of incident voltage and
|
||||
current.
|
||||
Vref, Vrefp, Iref, Irefp: arrays of time and frequency domain
|
||||
representations of reflected voltage and
|
||||
Vref, Vrefp, Iref, Irefp: arrays of time and frequency domain
|
||||
representations of reflected voltage and
|
||||
current.
|
||||
Vtotal, Vtotalp, Itotal, Itotalp: arrays of time and frequency domain
|
||||
representations of total voltage and
|
||||
Vtotal, Vtotalp, Itotal, Itotalp: arrays of time and frequency domain
|
||||
representations of total voltage and
|
||||
current.
|
||||
s11, s21: array(s) of s11 and, optionally, s21 parameters.
|
||||
zin, yin: arrays of input impedance and input admittance parameters.
|
||||
@@ -189,105 +224,103 @@ def mpl_plot(filename, time, freqs, Vinc, Vincp, Iinc, Iincp, Vref, Vrefp,
|
||||
|
||||
# Print some useful values from s11, and input impedance
|
||||
s11minfreq = np.where(s11[pltrange] == np.amin(s11[pltrange]))[0][0]
|
||||
logger.info(f's11 minimum: {np.amin(s11[pltrange]):g} dB at ' +
|
||||
f'{freqs[s11minfreq + pltrangemin]:g} Hz')
|
||||
logger.info(f'At {freqs[s11minfreq + pltrangemin]:g} Hz...')
|
||||
logger.info(f'Input impedance: {np.abs(zin[s11minfreq + pltrangemin]):.1f}' +
|
||||
f'{zin[s11minfreq + pltrangemin].imag:+.1f}j Ohms')
|
||||
logger.info(f"s11 minimum: {np.amin(s11[pltrange]):g} dB at " + f"{freqs[s11minfreq + pltrangemin]:g} Hz")
|
||||
logger.info(f"At {freqs[s11minfreq + pltrangemin]:g} Hz...")
|
||||
logger.info(
|
||||
f"Input impedance: {np.abs(zin[s11minfreq + pltrangemin]):.1f}"
|
||||
+ f"{zin[s11minfreq + pltrangemin].imag:+.1f}j Ohms"
|
||||
)
|
||||
# logger.info(f'Input admittance (mag): {np.abs(yin[s11minfreq + pltrangemin]):g} S')
|
||||
# logger.info(f'Input admittance (phase): {np.angle(yin[s11minfreq + pltrangemin], deg=True):.1f} deg')
|
||||
|
||||
# Figure 1
|
||||
# Plot incident voltage
|
||||
fig1, ax = plt.subplots(num='Transmitter transmission line parameters',
|
||||
figsize=(20, 12), facecolor='w', edgecolor='w')
|
||||
fig1, ax = plt.subplots(
|
||||
num="Transmitter transmission line parameters", figsize=(20, 12), facecolor="w", edgecolor="w"
|
||||
)
|
||||
gs1 = gridspec.GridSpec(4, 2, hspace=0.7)
|
||||
ax = plt.subplot(gs1[0, 0])
|
||||
ax.plot(time, Vinc, 'r', lw=2, label='Vinc')
|
||||
ax.set_title('Incident voltage')
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Voltage [V]')
|
||||
ax.plot(time, Vinc, "r", lw=2, label="Vinc")
|
||||
ax.set_title("Incident voltage")
|
||||
ax.set_xlabel("Time [s]")
|
||||
ax.set_ylabel("Voltage [V]")
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
ax.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
# Plot frequency spectra of incident voltage
|
||||
ax = plt.subplot(gs1[0, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vincp[pltrange],
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'r')
|
||||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
ax.plot(freqs[pltrange], Vincp[pltrange], 'r', lw=2)
|
||||
ax.set_title('Incident voltage')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vincp[pltrange], "-.", use_line_collection=True)
|
||||
plt.setp(baseline, "linewidth", 0)
|
||||
plt.setp(stemlines, "color", "r")
|
||||
plt.setp(markerline, "markerfacecolor", "r", "markeredgecolor", "r")
|
||||
ax.plot(freqs[pltrange], Vincp[pltrange], "r", lw=2)
|
||||
ax.set_title("Incident voltage")
|
||||
ax.set_xlabel("Frequency [Hz]")
|
||||
ax.set_ylabel("Power [dB]")
|
||||
ax.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
# Plot incident current
|
||||
ax = plt.subplot(gs1[1, 0])
|
||||
ax.plot(time, Iinc, 'b', lw=2, label='Vinc')
|
||||
ax.set_title('Incident current')
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Current [A]')
|
||||
ax.plot(time, Iinc, "b", lw=2, label="Vinc")
|
||||
ax.set_title("Incident current")
|
||||
ax.set_xlabel("Time [s]")
|
||||
ax.set_ylabel("Current [A]")
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
ax.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
# Plot frequency spectra of incident current
|
||||
ax = plt.subplot(gs1[1, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Iincp[pltrange],
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'b')
|
||||
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
ax.plot(freqs[pltrange], Iincp[pltrange], 'b', lw=2)
|
||||
ax.set_title('Incident current')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Iincp[pltrange], "-.", use_line_collection=True)
|
||||
plt.setp(baseline, "linewidth", 0)
|
||||
plt.setp(stemlines, "color", "b")
|
||||
plt.setp(markerline, "markerfacecolor", "b", "markeredgecolor", "b")
|
||||
ax.plot(freqs[pltrange], Iincp[pltrange], "b", lw=2)
|
||||
ax.set_title("Incident current")
|
||||
ax.set_xlabel("Frequency [Hz]")
|
||||
ax.set_ylabel("Power [dB]")
|
||||
ax.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
# Plot total voltage
|
||||
ax = plt.subplot(gs1[2, 0])
|
||||
ax.plot(time, Vtotal, 'r', lw=2, label='Vinc')
|
||||
ax.set_title('Total (incident + reflected) voltage')
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Voltage [V]')
|
||||
ax.plot(time, Vtotal, "r", lw=2, label="Vinc")
|
||||
ax.set_title("Total (incident + reflected) voltage")
|
||||
ax.set_xlabel("Time [s]")
|
||||
ax.set_ylabel("Voltage [V]")
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
ax.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
# Plot frequency spectra of total voltage
|
||||
ax = plt.subplot(gs1[2, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vtotalp[pltrange],
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'r')
|
||||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
ax.plot(freqs[pltrange], Vtotalp[pltrange], 'r', lw=2)
|
||||
ax.set_title('Total (incident + reflected) voltage')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vtotalp[pltrange], "-.", use_line_collection=True)
|
||||
plt.setp(baseline, "linewidth", 0)
|
||||
plt.setp(stemlines, "color", "r")
|
||||
plt.setp(markerline, "markerfacecolor", "r", "markeredgecolor", "r")
|
||||
ax.plot(freqs[pltrange], Vtotalp[pltrange], "r", lw=2)
|
||||
ax.set_title("Total (incident + reflected) voltage")
|
||||
ax.set_xlabel("Frequency [Hz]")
|
||||
ax.set_ylabel("Power [dB]")
|
||||
ax.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
# Plot total current
|
||||
ax = plt.subplot(gs1[3, 0])
|
||||
ax.plot(time, Itotal, 'b', lw=2, label='Vinc')
|
||||
ax.set_title('Total (incident + reflected) current')
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Current [A]')
|
||||
ax.plot(time, Itotal, "b", lw=2, label="Vinc")
|
||||
ax.set_title("Total (incident + reflected) current")
|
||||
ax.set_xlabel("Time [s]")
|
||||
ax.set_ylabel("Current [A]")
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
ax.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
# Plot frequency spectra of total current
|
||||
ax = plt.subplot(gs1[3, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Itotalp[pltrange],
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'b')
|
||||
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
ax.plot(freqs[pltrange], Itotalp[pltrange], 'b', lw=2)
|
||||
ax.set_title('Total (incident + reflected) current')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Itotalp[pltrange], "-.", use_line_collection=True)
|
||||
plt.setp(baseline, "linewidth", 0)
|
||||
plt.setp(stemlines, "color", "b")
|
||||
plt.setp(markerline, "markerfacecolor", "b", "markeredgecolor", "b")
|
||||
ax.plot(freqs[pltrange], Itotalp[pltrange], "b", lw=2)
|
||||
ax.set_title("Total (incident + reflected) current")
|
||||
ax.set_xlabel("Frequency [Hz]")
|
||||
ax.set_ylabel("Power [dB]")
|
||||
ax.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
# Plot reflected (reflected) voltage
|
||||
# ax = plt.subplot(gs1[4, 0])
|
||||
@@ -335,69 +368,64 @@ def mpl_plot(filename, time, freqs, Vinc, Vincp, Iinc, Iincp, Vref, Vrefp,
|
||||
|
||||
# Figure 2
|
||||
# Plot frequency spectra of s11
|
||||
fig2, ax = plt.subplots(num='Antenna parameters', figsize=(20, 12),
|
||||
facecolor='w', edgecolor='w')
|
||||
fig2, ax = plt.subplots(num="Antenna parameters", figsize=(20, 12), facecolor="w", edgecolor="w")
|
||||
gs2 = gridspec.GridSpec(2, 2, hspace=0.3)
|
||||
ax = plt.subplot(gs2[0, 0])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s11[pltrange],
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
ax.plot(freqs[pltrange], s11[pltrange], 'g', lw=2)
|
||||
ax.set_title('s11')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s11[pltrange], "-.", use_line_collection=True)
|
||||
plt.setp(baseline, "linewidth", 0)
|
||||
plt.setp(stemlines, "color", "g")
|
||||
plt.setp(markerline, "markerfacecolor", "g", "markeredgecolor", "g")
|
||||
ax.plot(freqs[pltrange], s11[pltrange], "g", lw=2)
|
||||
ax.set_title("s11")
|
||||
ax.set_xlabel("Frequency [Hz]")
|
||||
ax.set_ylabel("Power [dB]")
|
||||
# ax.set_xlim([0, 5e9])
|
||||
# ax.set_ylim([-25, 0])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
ax.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
# Plot frequency spectra of s21
|
||||
if s21 is not None:
|
||||
ax = plt.subplot(gs2[0, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s21[pltrange],
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
ax.plot(freqs[pltrange], s21[pltrange], 'g', lw=2)
|
||||
ax.set_title('s21')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s21[pltrange], "-.", use_line_collection=True)
|
||||
plt.setp(baseline, "linewidth", 0)
|
||||
plt.setp(stemlines, "color", "g")
|
||||
plt.setp(markerline, "markerfacecolor", "g", "markeredgecolor", "g")
|
||||
ax.plot(freqs[pltrange], s21[pltrange], "g", lw=2)
|
||||
ax.set_title("s21")
|
||||
ax.set_xlabel("Frequency [Hz]")
|
||||
ax.set_ylabel("Power [dB]")
|
||||
# ax.set_xlim([0.88e9, 1.02e9])
|
||||
# ax.set_ylim([-25, 50])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
ax.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
# Plot input resistance (real part of impedance)
|
||||
ax = plt.subplot(gs2[1, 0])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].real,
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
ax.plot(freqs[pltrange], zin[pltrange].real, 'g', lw=2)
|
||||
ax.set_title('Input impedance (resistive)')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Resistance [Ohms]')
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].real, "-.", use_line_collection=True)
|
||||
plt.setp(baseline, "linewidth", 0)
|
||||
plt.setp(stemlines, "color", "g")
|
||||
plt.setp(markerline, "markerfacecolor", "g", "markeredgecolor", "g")
|
||||
ax.plot(freqs[pltrange], zin[pltrange].real, "g", lw=2)
|
||||
ax.set_title("Input impedance (resistive)")
|
||||
ax.set_xlabel("Frequency [Hz]")
|
||||
ax.set_ylabel("Resistance [Ohms]")
|
||||
# ax.set_xlim([0.88e9, 1.02e9])
|
||||
ax.set_ylim(bottom=0)
|
||||
# ax.set_ylim([0, 300])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
ax.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
# Plot input reactance (imaginery part of impedance)
|
||||
ax = plt.subplot(gs2[1, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].imag,
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
ax.plot(freqs[pltrange], zin[pltrange].imag, 'g', lw=2)
|
||||
ax.set_title('Input impedance (reactive)')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Reactance [Ohms]')
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].imag, "-.", use_line_collection=True)
|
||||
plt.setp(baseline, "linewidth", 0)
|
||||
plt.setp(stemlines, "color", "g")
|
||||
plt.setp(markerline, "markerfacecolor", "g", "markeredgecolor", "g")
|
||||
ax.plot(freqs[pltrange], zin[pltrange].imag, "g", lw=2)
|
||||
ax.set_title("Input impedance (reactive)")
|
||||
ax.set_xlabel("Frequency [Hz]")
|
||||
ax.set_ylabel("Reactance [Ohms]")
|
||||
# ax.set_xlim([0.88e9, 1.02e9])
|
||||
# ax.set_ylim([-300, 300])
|
||||
ax.grid(which='both', axis='both', linestyle='-.')
|
||||
ax.grid(which="both", axis="both", linestyle="-.")
|
||||
|
||||
# Plot input admittance (magnitude)
|
||||
# ax = plt.subplot(gs2[2, 0])
|
||||
@@ -430,49 +458,49 @@ def mpl_plot(filename, time, freqs, Vinc, Vincp, Iinc, Iincp, Vref, Vrefp,
|
||||
# ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
if save:
|
||||
savename1 = filename.stem + '_tl_params'
|
||||
savename1 = filename.stem + "_tl_params"
|
||||
savename1 = filename.parent / savename1
|
||||
savename2 = filename.stem + '_ant_params'
|
||||
savename2 = filename.stem + "_ant_params"
|
||||
savename2 = filename.parent / savename2
|
||||
# Save a PDF of the figure
|
||||
fig1.savefig(savename1.with_suffix('.pdf'), dpi=None, format='pdf',
|
||||
bbox_inches='tight', pad_inches=0.1)
|
||||
fig2.savefig(savename2.with_suffix('.pdf'), dpi=None, format='pdf',
|
||||
bbox_inches='tight', pad_inches=0.1)
|
||||
fig1.savefig(savename1.with_suffix(".pdf"), dpi=None, format="pdf", bbox_inches="tight", pad_inches=0.1)
|
||||
fig2.savefig(savename2.with_suffix(".pdf"), dpi=None, format="pdf", bbox_inches="tight", pad_inches=0.1)
|
||||
# Save a PNG of the figure
|
||||
# fig1.savefig(savename1.with_suffix('.png'), dpi=150, format='png',
|
||||
# fig1.savefig(savename1.with_suffix('.png'), dpi=150, format='png',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
# fig2.savefig(savename2.with_suffix('.png'), dpi=150, format='png',
|
||||
# fig2.savefig(savename2.with_suffix('.png'), dpi=150, format='png',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
return plt
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='Plots antenna parameters - ' +
|
||||
'incident, reflected and total voltages ' +
|
||||
'and currents; s11, (s21) and input impedance ' +
|
||||
'from an output file containing a transmission ' +
|
||||
'line source.',
|
||||
usage='cd gprMax; python -m toolboxes.Plotting.plot_antenna_params outputfile')
|
||||
parser.add_argument('outputfile', help='name of output file including path')
|
||||
parser.add_argument('--tltx-num', default=1, type=int,
|
||||
help='transmitter antenna - transmission line number')
|
||||
parser.add_argument('--tlrx-num', type=int,
|
||||
help='receiver antenna - transmission line number')
|
||||
parser.add_argument('--rx-num', type=int,
|
||||
help='receiver antenna - output number')
|
||||
parser.add_argument('--rx-component', type=str,
|
||||
help='receiver antenna - output electric field component',
|
||||
choices=['Ex', 'Ey', 'Ez'])
|
||||
parser.add_argument('-save', action='store_true', default=False,
|
||||
help='save plot directly to file, i.e. do not display')
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Plots antenna parameters - "
|
||||
+ "incident, reflected and total voltages "
|
||||
+ "and currents; s11, (s21) and input impedance "
|
||||
+ "from an output file containing a transmission "
|
||||
+ "line source.",
|
||||
usage="cd gprMax; python -m toolboxes.Plotting.plot_antenna_params outputfile",
|
||||
)
|
||||
parser.add_argument("outputfile", help="name of output file including path")
|
||||
parser.add_argument("--tltx-num", default=1, type=int, help="transmitter antenna - transmission line number")
|
||||
parser.add_argument("--tlrx-num", type=int, help="receiver antenna - transmission line number")
|
||||
parser.add_argument("--rx-num", type=int, help="receiver antenna - output number")
|
||||
parser.add_argument(
|
||||
"--rx-component",
|
||||
type=str,
|
||||
help="receiver antenna - output electric field component",
|
||||
choices=["Ex", "Ey", "Ez"],
|
||||
)
|
||||
parser.add_argument(
|
||||
"-save", action="store_true", default=False, help="save plot directly to file, i.e. do not display"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
antennaparams = calculate_antenna_params(args.outputfile, args.tltx_num,
|
||||
args.tlrx_num, args.rx_num,
|
||||
args.rx_component)
|
||||
antennaparams = calculate_antenna_params(
|
||||
args.outputfile, args.tltx_num, args.tlrx_num, args.rx_num, args.rx_component
|
||||
)
|
||||
plthandle = mpl_plot(args.outputfile, **antennaparams, save=args.save)
|
||||
plthandle.show()
|
||||
|
@@ -25,7 +25,7 @@ import numpy as np
|
||||
from gprMax.utilities.utilities import fft_power, round_value
|
||||
from gprMax.waveforms import Waveform
|
||||
|
||||
logging.basicConfig(format='%(message)s', level=logging.INFO)
|
||||
logging.basicConfig(format="%(message)s", level=logging.INFO)
|
||||
|
||||
|
||||
def check_timewindow(timewindow, dt):
|
||||
@@ -53,7 +53,7 @@ def check_timewindow(timewindow, dt):
|
||||
if timewindow > 0:
|
||||
iterations = round_value((timewindow / dt)) + 1
|
||||
else:
|
||||
logging.exception('Time window must have a value greater than zero')
|
||||
logging.exception("Time window must have a value greater than zero")
|
||||
raise ValueError
|
||||
|
||||
return timewindow, iterations
|
||||
@@ -76,36 +76,41 @@ def mpl_plot(w, timewindow, dt, iterations, fft=False, save=False):
|
||||
|
||||
time = np.linspace(0, (iterations - 1) * dt, num=iterations)
|
||||
waveform = np.zeros(len(time))
|
||||
timeiter = np.nditer(time, flags=['c_index'])
|
||||
timeiter = np.nditer(time, flags=["c_index"])
|
||||
|
||||
while not timeiter.finished:
|
||||
waveform[timeiter.index] = w.calculate_value(timeiter[0], dt)
|
||||
timeiter.iternext()
|
||||
|
||||
logging.info('Waveform characteristics...')
|
||||
logging.info(f'Type: {w.type}')
|
||||
logging.info(f'Maximum (absolute) amplitude: {np.max(np.abs(waveform)):g}')
|
||||
logging.info("Waveform characteristics...")
|
||||
logging.info(f"Type: {w.type}")
|
||||
logging.info(f"Maximum (absolute) amplitude: {np.max(np.abs(waveform)):g}")
|
||||
|
||||
if w.freq and not w.type == 'gaussian' and not w.type == 'impulse':
|
||||
logging.info(f'Centre frequency: {w.freq:g} Hz')
|
||||
if w.freq and not w.type == "gaussian" and not w.type == "impulse":
|
||||
logging.info(f"Centre frequency: {w.freq:g} Hz")
|
||||
|
||||
if (w.type == 'gaussian' or w.type == 'gaussiandot' or w.type == 'gaussiandotnorm'
|
||||
or w.type == 'gaussianprime' or w.type == 'gaussiandoubleprime'):
|
||||
if (
|
||||
w.type == "gaussian"
|
||||
or w.type == "gaussiandot"
|
||||
or w.type == "gaussiandotnorm"
|
||||
or w.type == "gaussianprime"
|
||||
or w.type == "gaussiandoubleprime"
|
||||
):
|
||||
delay = 1 / w.freq
|
||||
logging.info(f'Time to centre of pulse: {delay:g} s')
|
||||
elif w.type == 'gaussiandotdot' or w.type == 'gaussiandotdotnorm' or w.type == 'ricker':
|
||||
logging.info(f"Time to centre of pulse: {delay:g} s")
|
||||
elif w.type == "gaussiandotdot" or w.type == "gaussiandotdotnorm" or w.type == "ricker":
|
||||
delay = np.sqrt(2) / w.freq
|
||||
logging.info(f'Time to centre of pulse: {delay:g} s')
|
||||
logging.info(f"Time to centre of pulse: {delay:g} s")
|
||||
|
||||
logging.info(f'Time window: {timewindow:g} s ({iterations} iterations)')
|
||||
logging.info(f'Time step: {dt:g} s')
|
||||
logging.info(f"Time window: {timewindow:g} s ({iterations} iterations)")
|
||||
logging.info(f"Time step: {dt:g} s")
|
||||
|
||||
if fft:
|
||||
# FFT
|
||||
freqs, power = fft_power(waveform, dt)
|
||||
|
||||
# Set plotting range to 4 times frequency at max power of waveform or
|
||||
# 4 times the centre frequency
|
||||
# 4 times the centre frequency
|
||||
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
|
||||
if freqs[freqmaxpower] > w.freq:
|
||||
pltrange = np.where(freqs > 4 * freqs[freqmaxpower])[0][0]
|
||||
@@ -113,73 +118,66 @@ def mpl_plot(w, timewindow, dt, iterations, fft=False, save=False):
|
||||
pltrange = np.where(freqs > 4 * w.freq)[0][0]
|
||||
pltrange = np.s_[0:pltrange]
|
||||
|
||||
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num=w.type,
|
||||
figsize=(20, 10), facecolor='w',
|
||||
edgecolor='w')
|
||||
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num=w.type, figsize=(20, 10), facecolor="w", edgecolor="w")
|
||||
|
||||
# Plot waveform
|
||||
ax1.plot(time, waveform, 'r', lw=2)
|
||||
ax1.set_xlabel('Time [s]')
|
||||
ax1.set_ylabel('Amplitude')
|
||||
ax1.plot(time, waveform, "r", lw=2)
|
||||
ax1.set_xlabel("Time [s]")
|
||||
ax1.set_ylabel("Amplitude")
|
||||
|
||||
# Plot frequency spectra
|
||||
markerline, stemlines, baseline = ax2.stem(freqs[pltrange], power[pltrange],
|
||||
'-.', use_line_collection=True)
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'r')
|
||||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
ax2.plot(freqs[pltrange], power[pltrange], 'r', lw=2)
|
||||
ax2.set_xlabel('Frequency [Hz]')
|
||||
ax2.set_ylabel('Power [dB]')
|
||||
markerline, stemlines, baseline = ax2.stem(freqs[pltrange], power[pltrange], "-.", use_line_collection=True)
|
||||
plt.setp(baseline, "linewidth", 0)
|
||||
plt.setp(stemlines, "color", "r")
|
||||
plt.setp(markerline, "markerfacecolor", "r", "markeredgecolor", "r")
|
||||
ax2.plot(freqs[pltrange], power[pltrange], "r", lw=2)
|
||||
ax2.set_xlabel("Frequency [Hz]")
|
||||
ax2.set_ylabel("Power [dB]")
|
||||
|
||||
else:
|
||||
fig, ax1 = plt.subplots(num=w.type, figsize=(10, 10), facecolor='w',
|
||||
edgecolor='w')
|
||||
fig, ax1 = plt.subplots(num=w.type, figsize=(10, 10), facecolor="w", edgecolor="w")
|
||||
|
||||
# Plot waveform
|
||||
ax1.plot(time, waveform, 'r', lw=2)
|
||||
ax1.set_xlabel('Time [s]')
|
||||
ax1.set_ylabel('Amplitude')
|
||||
ax1.plot(time, waveform, "r", lw=2)
|
||||
ax1.set_xlabel("Time [s]")
|
||||
ax1.set_ylabel("Amplitude")
|
||||
|
||||
# Turn on grid
|
||||
[ax.grid(which='both', axis='both', linestyle='-.') for ax in fig.axes]
|
||||
[ax.grid(which="both", axis="both", linestyle="-.") for ax in fig.axes]
|
||||
|
||||
if save:
|
||||
savefile = Path(__file__).parent / w.type
|
||||
# Save a PDF of the figure
|
||||
fig.savefig(savefile.with_suffix('.pdf'), dpi=None, format='pdf',
|
||||
bbox_inches='tight', pad_inches=0.1)
|
||||
fig.savefig(savefile.with_suffix(".pdf"), dpi=None, format="pdf", bbox_inches="tight", pad_inches=0.1)
|
||||
# Save a PNG of the figure
|
||||
fig.savefig(savefile.with_suffix('.png'), dpi=150, format='png',
|
||||
bbox_inches='tight', pad_inches=0.1)
|
||||
fig.savefig(savefile.with_suffix(".png"), dpi=150, format="png", bbox_inches="tight", pad_inches=0.1)
|
||||
|
||||
return plt
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='Plot built-in waveforms that can be used for sources.',
|
||||
usage='cd gprMax; python -m toolboxes.Plotting.plot_source_wave type amp freq timewindow dt')
|
||||
parser.add_argument('type', help='type of waveform', choices=Waveform.types)
|
||||
parser.add_argument('amp', type=float, help='amplitude of waveform')
|
||||
parser.add_argument('freq', type=float, help='centre frequency of waveform')
|
||||
parser.add_argument('timewindow', help='time window to view waveform')
|
||||
parser.add_argument('dt', type=float, help='time step to view waveform')
|
||||
parser.add_argument('-fft', action='store_true', default=False,
|
||||
help='plot FFT of waveform')
|
||||
parser.add_argument('-save', action='store_true', default=False,
|
||||
help='save plot directly to file, i.e. do not display')
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Plot built-in waveforms that can be used for sources.",
|
||||
usage="cd gprMax; python -m toolboxes.Plotting.plot_source_wave type amp freq timewindow dt",
|
||||
)
|
||||
parser.add_argument("type", help="type of waveform", choices=Waveform.types)
|
||||
parser.add_argument("amp", type=float, help="amplitude of waveform")
|
||||
parser.add_argument("freq", type=float, help="centre frequency of waveform")
|
||||
parser.add_argument("timewindow", help="time window to view waveform")
|
||||
parser.add_argument("dt", type=float, help="time step to view waveform")
|
||||
parser.add_argument("-fft", action="store_true", default=False, help="plot FFT of waveform")
|
||||
parser.add_argument(
|
||||
"-save", action="store_true", default=False, help="save plot directly to file, i.e. do not display"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Check waveform parameters
|
||||
if args.type.lower() not in Waveform.types:
|
||||
logging.exception(f"The waveform must have one of the following types " +
|
||||
f"{', '.join(Waveform.types)}")
|
||||
logging.exception(f"The waveform must have one of the following types " + f"{', '.join(Waveform.types)}")
|
||||
raise ValueError
|
||||
if args.freq <= 0:
|
||||
logging.exception('The waveform requires an excitation frequency value of ' +
|
||||
'greater than zero')
|
||||
logging.exception("The waveform requires an excitation frequency value of " + "greater than zero")
|
||||
raise ValueError
|
||||
|
||||
# Create waveform instance
|
||||
@@ -189,6 +187,5 @@ if __name__ == "__main__":
|
||||
w.freq = args.freq
|
||||
|
||||
timewindow, iterations = check_timewindow(args.timewindow, args.dt)
|
||||
plthandle = mpl_plot(w, timewindow, args.dt, iterations, fft=args.fft,
|
||||
save=args.save)
|
||||
plthandle = mpl_plot(w, timewindow, args.dt, iterations, fft=args.fft, save=args.save)
|
||||
plthandle.show()
|
||||
|
在新工单中引用
屏蔽一个用户