Added a pre-commit config file and reformatted all the files accordingly by using it.

这个提交包含在:
Sai-Suraj-27
2023-06-26 16:09:39 +05:30
父节点 c71e87e34f
当前提交 f9dd7f2420
共有 155 个文件被更改,包括 11383 次插入8802 次删除

查看文件

@@ -18,8 +18,11 @@ logger = logging.getLogger(__name__)
# Parse command line arguments
parser = argparse.ArgumentParser(description='Calculate and store (in a Numpy file) field patterns from a simulation with receivers positioned in circles around an antenna.', usage='cd gprMax; python -m user_libs.AntennaPatterns.initial_save outputfile')
parser.add_argument('outputfile', help='name of gprMax output file including path')
parser = argparse.ArgumentParser(
description="Calculate and store (in a Numpy file) field patterns from a simulation with receivers positioned in circles around an antenna.",
usage="cd gprMax; python -m user_libs.AntennaPatterns.initial_save outputfile",
)
parser.add_argument("outputfile", help="name of gprMax output file including path")
args = parser.parse_args()
outputfile = args.outputfile
@@ -27,7 +30,7 @@ outputfile = args.outputfile
# User configurable parameters
# Pattern type (E or H)
type = 'H'
type = "H"
# Antenna (true if using full antenna model; false for a theoretical Hertzian dipole
antenna = True
@@ -55,35 +58,47 @@ traceno = np.s_[:] # All traces
# Critical angle and velocity
if epsr:
mr = 1
z1 = np.sqrt(mr / epsr) * config.sim_config.em_consts['z0']
v1 = config.sim_config.em_consts['c'] / np.sqrt(epsr)
thetac = np.round(np.arcsin(v1 / config.sim_config.em_consts['c']) * (180 / np.pi))
z1 = np.sqrt(mr / epsr) * config.sim_config.em_consts["z0"]
v1 = config.sim_config.em_consts["c"] / np.sqrt(epsr)
thetac = np.round(np.arcsin(v1 / config.sim_config.em_consts["c"]) * (180 / np.pi))
wavelength = v1 / f
# Print some useful information
logger.info('Centre frequency: {} GHz'.format(f / 1e9))
logger.info("Centre frequency: {} GHz".format(f / 1e9))
if epsr:
logger.info('Critical angle for Er {} is {} degrees'.format(epsr, thetac))
logger.info('Wavelength: {:.3f} m'.format(wavelength))
logger.info('Observation distance(s) from {:.3f} m ({:.1f} wavelengths) to {:.3f} m ({:.1f} wavelengths)'.format(radii[0], radii[0] / wavelength, radii[-1], radii[-1] / wavelength))
logger.info('Theoretical boundary between reactive & radiating near-field (0.62*sqrt((D^3/wavelength): {:.3f} m'.format(0.62 * np.sqrt((D**3) / wavelength)))
logger.info('Theoretical boundary between radiating near-field & far-field (2*D^2/wavelength): {:.3f} m'.format((2 * D**2) / wavelength))
logger.info("Critical angle for Er {} is {} degrees".format(epsr, thetac))
logger.info("Wavelength: {:.3f} m".format(wavelength))
logger.info(
"Observation distance(s) from {:.3f} m ({:.1f} wavelengths) to {:.3f} m ({:.1f} wavelengths)".format(
radii[0], radii[0] / wavelength, radii[-1], radii[-1] / wavelength
)
)
logger.info(
"Theoretical boundary between reactive & radiating near-field (0.62*sqrt((D^3/wavelength): {:.3f} m".format(
0.62 * np.sqrt((D**3) / wavelength)
)
)
logger.info(
"Theoretical boundary between radiating near-field & far-field (2*D^2/wavelength): {:.3f} m".format(
(2 * D**2) / wavelength
)
)
# Load text file with coordinates of pattern origin
origin = np.loadtxt(os.path.splitext(outputfile)[0] + '_rxsorigin.txt')
origin = np.loadtxt(os.path.splitext(outputfile)[0] + "_rxsorigin.txt")
# Load output file and read some header information
f = h5py.File(outputfile, 'r')
iterations = f.attrs['Iterations']
dt = f.attrs['dt']
nrx = f.attrs['nrx']
f = h5py.File(outputfile, "r")
iterations = f.attrs["Iterations"]
dt = f.attrs["dt"]
nrx = f.attrs["nrx"]
if antenna:
nrx = nrx - 1 # Ignore first receiver point with full antenna model
start = 2
else:
start = 1
time = np.arange(0, dt * iterations, dt)
time = time / 1E-9
time = time / 1e-9
fs = 1 / dt # Sampling frequency
# Initialise arrays to store fields
@@ -105,15 +120,15 @@ Hthetasum = np.zeros(len(theta), dtype=np.float32)
patternsave = np.zeros((len(radii), len(theta)), dtype=np.float32)
for rx in range(0, nrx):
path = '/rxs/rx' + str(rx + start) + '/'
position = f[path].attrs['Position'][:]
path = "/rxs/rx" + str(rx + start) + "/"
position = f[path].attrs["Position"][:]
coords[rx, :] = position - origin
Ex[:, rx] = f[path + 'Ex'][:]
Ey[:, rx] = f[path + 'Ey'][:]
Ez[:, rx] = f[path + 'Ez'][:]
Hx[:, rx] = f[path + 'Hx'][:]
Hy[:, rx] = f[path + 'Hy'][:]
Hz[:, rx] = f[path + 'Hz'][:]
Ex[:, rx] = f[path + "Ex"][:]
Ey[:, rx] = f[path + "Ey"][:]
Ez[:, rx] = f[path + "Ez"][:]
Hx[:, rx] = f[path + "Hx"][:]
Hy[:, rx] = f[path + "Hy"][:]
Hz[:, rx] = f[path + "Hz"][:]
f.close()
# Plot traces for sanity checking
@@ -141,14 +156,23 @@ for radius in range(0, len(radii)):
# Observation points
for pt in range(rxstart, rxstart + len(theta)):
# Cartesian to spherical coordinate transform coefficients from (Kraus,1991,Electromagnetics,p.34)
r1 = coords[pt, 0] / np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2 + coords[pt, 2]**2)
r2 = coords[pt, 1] / np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2 + coords[pt, 2]**2)
r3 = coords[pt, 2] / np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2 + coords[pt, 2]**2)
theta1 = (coords[pt, 0] * coords[pt, 2]) / (np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2) * np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2 + coords[pt, 2]**2))
theta2 = (coords[pt, 1] * coords[pt, 2]) / (np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2) * np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2 + coords[pt, 2]**2))
theta3 = -(np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2) / np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2 + coords[pt, 2]**2))
phi1 = -(coords[pt, 1] / np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2))
phi2 = coords[pt, 0] / np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2)
r1 = coords[pt, 0] / np.sqrt(coords[pt, 0] ** 2 + coords[pt, 1] ** 2 + coords[pt, 2] ** 2)
r2 = coords[pt, 1] / np.sqrt(coords[pt, 0] ** 2 + coords[pt, 1] ** 2 + coords[pt, 2] ** 2)
r3 = coords[pt, 2] / np.sqrt(coords[pt, 0] ** 2 + coords[pt, 1] ** 2 + coords[pt, 2] ** 2)
theta1 = (coords[pt, 0] * coords[pt, 2]) / (
np.sqrt(coords[pt, 0] ** 2 + coords[pt, 1] ** 2)
* np.sqrt(coords[pt, 0] ** 2 + coords[pt, 1] ** 2 + coords[pt, 2] ** 2)
)
theta2 = (coords[pt, 1] * coords[pt, 2]) / (
np.sqrt(coords[pt, 0] ** 2 + coords[pt, 1] ** 2)
* np.sqrt(coords[pt, 0] ** 2 + coords[pt, 1] ** 2 + coords[pt, 2] ** 2)
)
theta3 = -(
np.sqrt(coords[pt, 0] ** 2 + coords[pt, 1] ** 2)
/ np.sqrt(coords[pt, 0] ** 2 + coords[pt, 1] ** 2 + coords[pt, 2] ** 2)
)
phi1 = -(coords[pt, 1] / np.sqrt(coords[pt, 0] ** 2 + coords[pt, 1] ** 2))
phi2 = coords[pt, 0] / np.sqrt(coords[pt, 0] ** 2 + coords[pt, 1] ** 2)
phi3 = 0
# Fields in spherical coordinates
@@ -161,22 +185,22 @@ for radius in range(0, len(radii)):
# Calculate metric for time-domain field pattern values
if impscaling and coords[pt, 2] < 0:
Ethetasum[index] = np.sum(Etheta[:, index]**2) / z1
Hthetasum[index] = np.sum(Htheta[:, index]**2) / z1
Ethetasum[index] = np.sum(Etheta[:, index] ** 2) / z1
Hthetasum[index] = np.sum(Htheta[:, index] ** 2) / z1
else:
Ethetasum[index] = np.sum(Etheta[:, index]**2) / config.sim_config.em_consts['z0']
Hthetasum[index] = np.sum(Htheta[:, index]**2) / config.sim_config.em_consts['z0']
Ethetasum[index] = np.sum(Etheta[:, index] ** 2) / config.sim_config.em_consts["z0"]
Hthetasum[index] = np.sum(Htheta[:, index] ** 2) / config.sim_config.em_consts["z0"]
index += 1
if type == 'H':
if type == "H":
# Flip H-plane patterns as rx points are written CCW but always plotted CW
patternsave[radius, :] = Hthetasum[::-1]
elif type == 'E':
elif type == "E":
patternsave[radius, :] = Ethetasum
rxstart += len(theta)
# Save pattern to numpy file
np.save(os.path.splitext(outputfile)[0], patternsave)
logger.info('Written Numpy file: {}.npy'.format(os.path.splitext(outputfile)[0]))
logger.info("Written Numpy file: {}.npy".format(os.path.splitext(outputfile)[0]))

查看文件

@@ -17,8 +17,11 @@ logger = logging.getLogger(__name__)
# Parse command line arguments
parser = argparse.ArgumentParser(description='Plot field patterns from a simulation with receivers positioned in circles around an antenna. This module should be used after the field pattern data has been processed and stored using the initial_save.py module.', usage='cd gprMax; python -m user_libs.AntennaPatterns.plot_fields numpyfile')
parser.add_argument('numpyfile', help='name of numpy file including path')
parser = argparse.ArgumentParser(
description="Plot field patterns from a simulation with receivers positioned in circles around an antenna. This module should be used after the field pattern data has been processed and stored using the initial_save.py module.",
usage="cd gprMax; python -m user_libs.AntennaPatterns.plot_fields numpyfile",
)
parser.add_argument("numpyfile", help="name of numpy file including path")
# parser.add_argument('hertzian', help='name of numpy file including path')
args = parser.parse_args()
patterns = np.load(args.numpyfile)
@@ -28,7 +31,7 @@ patterns = np.load(args.numpyfile)
# User configurable parameters
# Pattern type (E or H)
type = 'H'
type = "H"
# Relative permittivity of half-space for homogeneous materials (set to None for inhomogeneous)
epsr = 5
@@ -52,33 +55,45 @@ step = 12
# Critical angle and velocity
if epsr:
mr = 1
z1 = np.sqrt(mr / epsr) * config.sim_config.em_consts['z0']
v1 = config.sim_config.em_consts['c'] / np.sqrt(epsr)
thetac = np.round(np.rad2deg(np.arcsin(v1 / config.sim_config.em_consts['c'])))
z1 = np.sqrt(mr / epsr) * config.sim_config.em_consts["z0"]
v1 = config.sim_config.em_consts["c"] / np.sqrt(epsr)
thetac = np.round(np.rad2deg(np.arcsin(v1 / config.sim_config.em_consts["c"])))
wavelength = v1 / f
# Print some useful information
logger.info('Centre frequency: {} GHz'.format(f / 1e9))
logger.info("Centre frequency: {} GHz".format(f / 1e9))
if epsr:
logger.info('Critical angle for Er {} is {} degrees'.format(epsr, thetac))
logger.info('Wavelength: {:.3f} m'.format(wavelength))
logger.info('Observation distance(s) from {:.3f} m ({:.1f} wavelengths) to {:.3f} m ({:.1f} wavelengths)'.format(radii[0], radii[0] / wavelength, radii[-1], radii[-1] / wavelength))
logger.info('Theoretical boundary between reactive & radiating near-field (0.62*sqrt((D^3/wavelength): {:.3f} m'.format(0.62 * np.sqrt((D**3) / wavelength)))
logger.info('Theoretical boundary between radiating near-field & far-field (2*D^2/wavelength): {:.3f} m'.format((2 * D**2) / wavelength))
logger.info("Critical angle for Er {} is {} degrees".format(epsr, thetac))
logger.info("Wavelength: {:.3f} m".format(wavelength))
logger.info(
"Observation distance(s) from {:.3f} m ({:.1f} wavelengths) to {:.3f} m ({:.1f} wavelengths)".format(
radii[0], radii[0] / wavelength, radii[-1], radii[-1] / wavelength
)
)
logger.info(
"Theoretical boundary between reactive & radiating near-field (0.62*sqrt((D^3/wavelength): {:.3f} m".format(
0.62 * np.sqrt((D**3) / wavelength)
)
)
logger.info(
"Theoretical boundary between radiating near-field & far-field (2*D^2/wavelength): {:.3f} m".format(
(2 * D**2) / wavelength
)
)
# Setup figure
fig = plt.figure(num=args.numpyfile, figsize=(8, 8), facecolor='w', edgecolor='w')
fig = plt.figure(num=args.numpyfile, figsize=(8, 8), facecolor="w", edgecolor="w")
ax = plt.subplot(111, polar=True)
cmap = plt.cm.get_cmap('rainbow')
ax.set_prop_cycle('color', [cmap(i) for i in np.linspace(0, 1, len(radii))])
cmap = plt.cm.get_cmap("rainbow")
ax.set_prop_cycle("color", [cmap(i) for i in np.linspace(0, 1, len(radii))])
# Critical angle window and air/subsurface interface lines
if epsr:
ax.plot([0, np.deg2rad(180 - thetac)], [min, 0], color='0.7', lw=2)
ax.plot([0, np.deg2rad(180 + thetac)], [min, 0], color='0.7', lw=2)
ax.plot([np.deg2rad(270), np.deg2rad(90)], [0, 0], color='0.7', lw=2)
ax.annotate('Air', xy=(np.deg2rad(270), 0), xytext=(8, 8), textcoords='offset points')
ax.annotate('Ground', xy=(np.deg2rad(270), 0), xytext=(8, -15), textcoords='offset points')
ax.plot([0, np.deg2rad(180 - thetac)], [min, 0], color="0.7", lw=2)
ax.plot([0, np.deg2rad(180 + thetac)], [min, 0], color="0.7", lw=2)
ax.plot([np.deg2rad(270), np.deg2rad(90)], [0, 0], color="0.7", lw=2)
ax.annotate("Air", xy=(np.deg2rad(270), 0), xytext=(8, 8), textcoords="offset points")
ax.annotate("Ground", xy=(np.deg2rad(270), 0), xytext=(8, -15), textcoords="offset points")
# Plot patterns
for patt in range(0, len(radii)):
@@ -86,12 +101,12 @@ for patt in range(0, len(radii)):
pattplot = pattplot / np.max(np.max(patterns)) # Normalise, based on set of patterns
# Calculate power (ignore warning from taking a log of any zero values)
with np.errstate(divide='ignore'):
with np.errstate(divide="ignore"):
power = 10 * np.log10(pattplot)
# Replace any NaNs or Infs from zero division
power[np.invert(np.isfinite(power))] = 0
ax.plot(theta, power, label='{:.2f}m'.format(radii[patt]), marker='.', ms=6, lw=1.5)
ax.plot(theta, power, label="{:.2f}m".format(radii[patt]), marker=".", ms=6, lw=1.5)
# Add Hertzian dipole plot
# hertzplot1 = np.append(hertzian[0, :], hertzian[0, 0]) # Append start value to close circle
@@ -102,8 +117,8 @@ for patt in range(0, len(radii)):
# ax.plot(theta, 10 * np.log10(hertzplot2), label='Inf. dipole, 0.58m', color='black', ls='--', lw=3)
# Theta axis options
ax.set_theta_zero_location('N')
ax.set_theta_direction('clockwise')
ax.set_theta_zero_location("N")
ax.set_theta_direction("clockwise")
ax.set_thetagrids(np.arange(0, 360, 30))
# Radial axis options
@@ -111,19 +126,21 @@ ax.set_rmax(0)
ax.set_rlabel_position(45)
ax.set_yticks(np.arange(min, step, step))
yticks = ax.get_yticks().tolist()
yticks[-1] = '0 dB'
yticks[-1] = "0 dB"
ax.set_yticklabels(yticks)
# Grid and legend
ax.grid(True)
handles, existlabels = ax.get_legend_handles_labels()
leg = ax.legend([handles[0], handles[-1]], [existlabels[0], existlabels[-1]], ncol=2, loc=(0.27, -0.12), frameon=False) # Plot just first and last legend entries
leg = ax.legend(
[handles[0], handles[-1]], [existlabels[0], existlabels[-1]], ncol=2, loc=(0.27, -0.12), frameon=False
) # Plot just first and last legend entries
# leg = ax.legend([handles[0], handles[-3], handles[-2], handles[-1]], [existlabels[0], existlabels[-3], existlabels[-2], existlabels[-1]], ncol=4, loc=(-0.13,-0.12), frameon=False)
[legobj.set_linewidth(2) for legobj in leg.legendHandles]
# Save a pdf of the plot
savename = os.path.splitext(args.numpyfile)[0] + '.pdf'
fig.savefig(savename, dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
savename = os.path.splitext(args.numpyfile)[0] + ".pdf"
fig.savefig(savename, dpi=None, format="pdf", bbox_inches="tight", pad_inches=0.1)
# savename = os.path.splitext(args.numpyfile)[0] + '.png'
# fig.savefig(savename, dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)