你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-08 07:24:19 +08:00
Added a pre-commit config file and reformatted all the files accordingly by using it.
这个提交包含在:
@@ -28,41 +28,45 @@ import numpy as np
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Create/setup plot figure
|
||||
#colors = ['#E60D30', '#5CB7C6', '#A21797', '#A3B347'] # Plot colours from http://tools.medialab.sciences-po.fr/iwanthue/index.php
|
||||
#colorIDs = ["#62a85b", "#9967c7", "#b3943f", "#6095cd", "#cb5c42", "#c95889"]
|
||||
# colors = ['#E60D30', '#5CB7C6', '#A21797', '#A3B347'] # Plot colours from http://tools.medialab.sciences-po.fr/iwanthue/index.php
|
||||
# colorIDs = ["#62a85b", "#9967c7", "#b3943f", "#6095cd", "#cb5c42", "#c95889"]
|
||||
colorIDs = ["#79c72e", "#5774ff", "#ff7c2c", "#4b4e80", "#d7004e", "#007545", "#ff83ec"]
|
||||
#colorIDs = ["#ba0044", "#b2d334", "#470055", "#185300", "#ff96b1", "#3e2700", "#0162a9", "#fdb786"]
|
||||
# colorIDs = ["#ba0044", "#b2d334", "#470055", "#185300", "#ff96b1", "#3e2700", "#0162a9", "#fdb786"]
|
||||
colors = itertools.cycle(colorIDs)
|
||||
# for i in range(2):
|
||||
# next(colors)
|
||||
lines = itertools.cycle(('--', ':', '-.', '-'))
|
||||
markers = ['o', 'd', '^', 's', '*']
|
||||
lines = itertools.cycle(("--", ":", "-.", "-"))
|
||||
markers = ["o", "d", "^", "s", "*"]
|
||||
|
||||
parts = Path(__file__).parts
|
||||
path = 'rxs/rx1/'
|
||||
basename = 'pml_3D_pec_plate'
|
||||
PMLIDs = ['CFS-PML', 'HORIPML-1', 'HORIPML-2', 'MRIPML-1', 'MRIPML-2']
|
||||
path = "rxs/rx1/"
|
||||
basename = "pml_3D_pec_plate"
|
||||
PMLIDs = ["CFS-PML", "HORIPML-1", "HORIPML-2", "MRIPML-1", "MRIPML-2"]
|
||||
maxerrors = []
|
||||
testmodels = ['pml_3D_pec_plate_' + s for s in PMLIDs]
|
||||
testmodels = ["pml_3D_pec_plate_" + s for s in PMLIDs]
|
||||
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Error [dB]'), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
fig, ax = plt.subplots(
|
||||
subplot_kw=dict(xlabel="Iterations", ylabel="Error [dB]"), figsize=(20, 10), facecolor="w", edgecolor="w"
|
||||
)
|
||||
|
||||
for x, model in enumerate(testmodels):
|
||||
# Open output file and read iterations
|
||||
fileref = h5py.File(Path(*parts[:-1], basename, basename + '_ref.h5'), 'r')
|
||||
filetest = h5py.File(Path(*parts[:-1], basename, basename + str(x + 1) + '.h5'), 'r')
|
||||
fileref = h5py.File(Path(*parts[:-1], basename, basename + "_ref.h5"), "r")
|
||||
filetest = h5py.File(Path(*parts[:-1], basename, basename + str(x + 1) + ".h5"), "r")
|
||||
|
||||
# Get available field output component names
|
||||
outputsref = list(fileref[path].keys())
|
||||
outputstest = list(filetest[path].keys())
|
||||
if outputsref != outputstest:
|
||||
logger.exception('Field output components do not match reference solution')
|
||||
logger.exception("Field output components do not match reference solution")
|
||||
raise ValueError
|
||||
|
||||
# Check that type of float used to store fields matches
|
||||
if filetest[path + outputstest[0]].dtype != fileref[path + outputsref[0]].dtype:
|
||||
logger.warning(f'Type of floating point number in test model ({filetest[path + outputstest[0]].dtype}) '
|
||||
f'does not match type in reference solution ({fileref[path + outputsref[0]].dtype})\n')
|
||||
logger.warning(
|
||||
f"Type of floating point number in test model ({filetest[path + outputstest[0]].dtype}) "
|
||||
f"does not match type in reference solution ({fileref[path + outputsref[0]].dtype})\n"
|
||||
)
|
||||
floattyperef = fileref[path + outputsref[0]].dtype
|
||||
floattypetest = filetest[path + outputstest[0]].dtype
|
||||
# logger.info(f'Data type: {floattypetest}')
|
||||
@@ -72,19 +76,19 @@ for x, model in enumerate(testmodels):
|
||||
# timeref = np.linspace(0, (fileref.attrs['Iterations'] - 1) * fileref.attrs['dt'], num=fileref.attrs['Iterations']) / 1e-9
|
||||
# timetest = np.zeros((filetest.attrs['Iterations']), dtype=floattypetest)
|
||||
# timetest = np.linspace(0, (filetest.attrs['Iterations'] - 1) * filetest.attrs['dt'], num=filetest.attrs['Iterations']) / 1e-9
|
||||
timeref = np.zeros((fileref.attrs['Iterations']), dtype=floattyperef)
|
||||
timeref = np.linspace(0, (fileref.attrs['Iterations'] - 1), num=fileref.attrs['Iterations'])
|
||||
timetest = np.zeros((filetest.attrs['Iterations']), dtype=floattypetest)
|
||||
timetest = np.linspace(0, (filetest.attrs['Iterations'] - 1), num=filetest.attrs['Iterations'])
|
||||
timeref = np.zeros((fileref.attrs["Iterations"]), dtype=floattyperef)
|
||||
timeref = np.linspace(0, (fileref.attrs["Iterations"] - 1), num=fileref.attrs["Iterations"])
|
||||
timetest = np.zeros((filetest.attrs["Iterations"]), dtype=floattypetest)
|
||||
timetest = np.linspace(0, (filetest.attrs["Iterations"] - 1), num=filetest.attrs["Iterations"])
|
||||
|
||||
# Arrays for storing field data
|
||||
dataref = np.zeros((fileref.attrs['Iterations'], len(outputsref)), dtype=floattyperef)
|
||||
datatest = np.zeros((filetest.attrs['Iterations'], len(outputstest)), dtype=floattypetest)
|
||||
dataref = np.zeros((fileref.attrs["Iterations"], len(outputsref)), dtype=floattyperef)
|
||||
datatest = np.zeros((filetest.attrs["Iterations"], len(outputstest)), dtype=floattypetest)
|
||||
for ID, name in enumerate(outputsref):
|
||||
dataref[:, ID] = fileref[path + str(name)][:]
|
||||
datatest[:, ID] = filetest[path + str(name)][:]
|
||||
if np.any(np.isnan(datatest[:, ID])):
|
||||
logger.exception('Test data contains NaNs')
|
||||
logger.exception("Test data contains NaNs")
|
||||
raise ValueError
|
||||
|
||||
fileref.close()
|
||||
@@ -94,18 +98,20 @@ for x, model in enumerate(testmodels):
|
||||
datadiffs = np.zeros(datatest.shape, dtype=np.float64)
|
||||
for i in range(len(outputstest)):
|
||||
maxi = np.amax(np.abs(dataref[:, i]))
|
||||
datadiffs[:, i] = np.divide(np.abs(datatest[:, i] - dataref[:, i]), maxi, out=np.zeros_like(dataref[:, i]), where=maxi != 0) # Replace any division by zero with zero
|
||||
datadiffs[:, i] = np.divide(
|
||||
np.abs(datatest[:, i] - dataref[:, i]), maxi, out=np.zeros_like(dataref[:, i]), where=maxi != 0
|
||||
) # Replace any division by zero with zero
|
||||
|
||||
# Calculate power (ignore warning from taking a log of any zero values)
|
||||
with np.errstate(divide='ignore'):
|
||||
with np.errstate(divide="ignore"):
|
||||
datadiffs[:, i] = 20 * np.log10(datadiffs[:, i])
|
||||
# Replace any NaNs or Infs from zero division
|
||||
datadiffs[:, i][np.invert(np.isfinite(datadiffs[:, i]))] = 0
|
||||
|
||||
# Print maximum error value
|
||||
start = 210
|
||||
maxerrors.append(f': {np.amax(datadiffs[start::, 1]):.1f} [dB]')
|
||||
logger.info(f'{model}: Max. error {maxerrors[x]}')
|
||||
maxerrors.append(f": {np.amax(datadiffs[start::, 1]):.1f} [dB]")
|
||||
logger.info(f"{model}: Max. error {maxerrors[x]}")
|
||||
|
||||
# Plot diffs (select column to choose field component, 0-Ex, 1-Ey etc..)
|
||||
ax.plot(timeref[start::], datadiffs[start::, 1], color=next(colors), lw=2, ls=next(lines), label=model)
|
||||
@@ -114,16 +120,16 @@ for x, model in enumerate(testmodels):
|
||||
ax.set_yticks(np.arange(-160, 0, step=20))
|
||||
ax.set_ylim([-160, -20])
|
||||
ax.set_axisbelow(True)
|
||||
ax.grid(color=(0.75,0.75,0.75), linestyle='dashed')
|
||||
ax.grid(color=(0.75, 0.75, 0.75), linestyle="dashed")
|
||||
|
||||
mylegend = list(map(add, PMLIDs, maxerrors))
|
||||
legend = ax.legend(mylegend, loc=1, fontsize=14)
|
||||
frame = legend.get_frame()
|
||||
frame.set_edgecolor('white')
|
||||
frame.set_edgecolor("white")
|
||||
frame.set_alpha(0)
|
||||
|
||||
plt.show()
|
||||
|
||||
# Save a PDF/PNG of the figure
|
||||
#fig.savefig(basepath + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
#fig.savefig(savename + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig.savefig(basepath + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig.savefig(savename + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
|
在新工单中引用
屏蔽一个用户