Added a pre-commit config file and reformatted all the files accordingly by using it.

这个提交包含在:
Sai-Suraj-27
2023-06-26 16:09:39 +05:30
父节点 c71e87e34f
当前提交 f9dd7f2420
共有 155 个文件被更改,包括 11383 次插入8802 次删除

查看文件

@@ -28,41 +28,45 @@ import numpy as np
logger = logging.getLogger(__name__)
# Create/setup plot figure
#colors = ['#E60D30', '#5CB7C6', '#A21797', '#A3B347'] # Plot colours from http://tools.medialab.sciences-po.fr/iwanthue/index.php
#colorIDs = ["#62a85b", "#9967c7", "#b3943f", "#6095cd", "#cb5c42", "#c95889"]
# colors = ['#E60D30', '#5CB7C6', '#A21797', '#A3B347'] # Plot colours from http://tools.medialab.sciences-po.fr/iwanthue/index.php
# colorIDs = ["#62a85b", "#9967c7", "#b3943f", "#6095cd", "#cb5c42", "#c95889"]
colorIDs = ["#79c72e", "#5774ff", "#ff7c2c", "#4b4e80", "#d7004e", "#007545", "#ff83ec"]
#colorIDs = ["#ba0044", "#b2d334", "#470055", "#185300", "#ff96b1", "#3e2700", "#0162a9", "#fdb786"]
# colorIDs = ["#ba0044", "#b2d334", "#470055", "#185300", "#ff96b1", "#3e2700", "#0162a9", "#fdb786"]
colors = itertools.cycle(colorIDs)
# for i in range(2):
# next(colors)
lines = itertools.cycle(('--', ':', '-.', '-'))
markers = ['o', 'd', '^', 's', '*']
lines = itertools.cycle(("--", ":", "-.", "-"))
markers = ["o", "d", "^", "s", "*"]
parts = Path(__file__).parts
path = 'rxs/rx1/'
basename = 'pml_3D_pec_plate'
PMLIDs = ['CFS-PML', 'HORIPML-1', 'HORIPML-2', 'MRIPML-1', 'MRIPML-2']
path = "rxs/rx1/"
basename = "pml_3D_pec_plate"
PMLIDs = ["CFS-PML", "HORIPML-1", "HORIPML-2", "MRIPML-1", "MRIPML-2"]
maxerrors = []
testmodels = ['pml_3D_pec_plate_' + s for s in PMLIDs]
testmodels = ["pml_3D_pec_plate_" + s for s in PMLIDs]
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Error [dB]'), figsize=(20, 10), facecolor='w', edgecolor='w')
fig, ax = plt.subplots(
subplot_kw=dict(xlabel="Iterations", ylabel="Error [dB]"), figsize=(20, 10), facecolor="w", edgecolor="w"
)
for x, model in enumerate(testmodels):
# Open output file and read iterations
fileref = h5py.File(Path(*parts[:-1], basename, basename + '_ref.h5'), 'r')
filetest = h5py.File(Path(*parts[:-1], basename, basename + str(x + 1) + '.h5'), 'r')
fileref = h5py.File(Path(*parts[:-1], basename, basename + "_ref.h5"), "r")
filetest = h5py.File(Path(*parts[:-1], basename, basename + str(x + 1) + ".h5"), "r")
# Get available field output component names
outputsref = list(fileref[path].keys())
outputstest = list(filetest[path].keys())
if outputsref != outputstest:
logger.exception('Field output components do not match reference solution')
logger.exception("Field output components do not match reference solution")
raise ValueError
# Check that type of float used to store fields matches
if filetest[path + outputstest[0]].dtype != fileref[path + outputsref[0]].dtype:
logger.warning(f'Type of floating point number in test model ({filetest[path + outputstest[0]].dtype}) '
f'does not match type in reference solution ({fileref[path + outputsref[0]].dtype})\n')
logger.warning(
f"Type of floating point number in test model ({filetest[path + outputstest[0]].dtype}) "
f"does not match type in reference solution ({fileref[path + outputsref[0]].dtype})\n"
)
floattyperef = fileref[path + outputsref[0]].dtype
floattypetest = filetest[path + outputstest[0]].dtype
# logger.info(f'Data type: {floattypetest}')
@@ -72,19 +76,19 @@ for x, model in enumerate(testmodels):
# timeref = np.linspace(0, (fileref.attrs['Iterations'] - 1) * fileref.attrs['dt'], num=fileref.attrs['Iterations']) / 1e-9
# timetest = np.zeros((filetest.attrs['Iterations']), dtype=floattypetest)
# timetest = np.linspace(0, (filetest.attrs['Iterations'] - 1) * filetest.attrs['dt'], num=filetest.attrs['Iterations']) / 1e-9
timeref = np.zeros((fileref.attrs['Iterations']), dtype=floattyperef)
timeref = np.linspace(0, (fileref.attrs['Iterations'] - 1), num=fileref.attrs['Iterations'])
timetest = np.zeros((filetest.attrs['Iterations']), dtype=floattypetest)
timetest = np.linspace(0, (filetest.attrs['Iterations'] - 1), num=filetest.attrs['Iterations'])
timeref = np.zeros((fileref.attrs["Iterations"]), dtype=floattyperef)
timeref = np.linspace(0, (fileref.attrs["Iterations"] - 1), num=fileref.attrs["Iterations"])
timetest = np.zeros((filetest.attrs["Iterations"]), dtype=floattypetest)
timetest = np.linspace(0, (filetest.attrs["Iterations"] - 1), num=filetest.attrs["Iterations"])
# Arrays for storing field data
dataref = np.zeros((fileref.attrs['Iterations'], len(outputsref)), dtype=floattyperef)
datatest = np.zeros((filetest.attrs['Iterations'], len(outputstest)), dtype=floattypetest)
dataref = np.zeros((fileref.attrs["Iterations"], len(outputsref)), dtype=floattyperef)
datatest = np.zeros((filetest.attrs["Iterations"], len(outputstest)), dtype=floattypetest)
for ID, name in enumerate(outputsref):
dataref[:, ID] = fileref[path + str(name)][:]
datatest[:, ID] = filetest[path + str(name)][:]
if np.any(np.isnan(datatest[:, ID])):
logger.exception('Test data contains NaNs')
logger.exception("Test data contains NaNs")
raise ValueError
fileref.close()
@@ -94,18 +98,20 @@ for x, model in enumerate(testmodels):
datadiffs = np.zeros(datatest.shape, dtype=np.float64)
for i in range(len(outputstest)):
maxi = np.amax(np.abs(dataref[:, i]))
datadiffs[:, i] = np.divide(np.abs(datatest[:, i] - dataref[:, i]), maxi, out=np.zeros_like(dataref[:, i]), where=maxi != 0) # Replace any division by zero with zero
datadiffs[:, i] = np.divide(
np.abs(datatest[:, i] - dataref[:, i]), maxi, out=np.zeros_like(dataref[:, i]), where=maxi != 0
) # Replace any division by zero with zero
# Calculate power (ignore warning from taking a log of any zero values)
with np.errstate(divide='ignore'):
with np.errstate(divide="ignore"):
datadiffs[:, i] = 20 * np.log10(datadiffs[:, i])
# Replace any NaNs or Infs from zero division
datadiffs[:, i][np.invert(np.isfinite(datadiffs[:, i]))] = 0
# Print maximum error value
start = 210
maxerrors.append(f': {np.amax(datadiffs[start::, 1]):.1f} [dB]')
logger.info(f'{model}: Max. error {maxerrors[x]}')
maxerrors.append(f": {np.amax(datadiffs[start::, 1]):.1f} [dB]")
logger.info(f"{model}: Max. error {maxerrors[x]}")
# Plot diffs (select column to choose field component, 0-Ex, 1-Ey etc..)
ax.plot(timeref[start::], datadiffs[start::, 1], color=next(colors), lw=2, ls=next(lines), label=model)
@@ -114,16 +120,16 @@ for x, model in enumerate(testmodels):
ax.set_yticks(np.arange(-160, 0, step=20))
ax.set_ylim([-160, -20])
ax.set_axisbelow(True)
ax.grid(color=(0.75,0.75,0.75), linestyle='dashed')
ax.grid(color=(0.75, 0.75, 0.75), linestyle="dashed")
mylegend = list(map(add, PMLIDs, maxerrors))
legend = ax.legend(mylegend, loc=1, fontsize=14)
frame = legend.get_frame()
frame.set_edgecolor('white')
frame.set_edgecolor("white")
frame.set_alpha(0)
plt.show()
# Save a PDF/PNG of the figure
#fig.savefig(basepath + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
#fig.savefig(savename + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
# fig.savefig(basepath + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
# fig.savefig(savename + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)

查看文件

@@ -20,112 +20,162 @@ dxdydz = gprMax.Discretisation(p1=(dl, dl, dl))
time_window = gprMax.TimeWindow(iterations=2100)
tssf = gprMax.TimeStepStabilityFactor(f=0.99)
waveform = gprMax.Waveform(wave_type='gaussiandotnorm', amp=1, freq=9.42e9, id='mypulse')
hertzian_dipole = gprMax.HertzianDipole(polarisation='z',
p1=(0.013, 0.013, 0.014),
waveform_id='mypulse')
waveform = gprMax.Waveform(wave_type="gaussiandotnorm", amp=1, freq=9.42e9, id="mypulse")
hertzian_dipole = gprMax.HertzianDipole(polarisation="z", p1=(0.013, 0.013, 0.014), waveform_id="mypulse")
rx = gprMax.Rx(p1=(0.038, 0.114, 0.013))
plate = gprMax.Plate(p1=(0.013, 0.013, 0.013),
p2=(0.038, 0.113, 0.013), material_id='pec')
plate = gprMax.Plate(p1=(0.013, 0.013, 0.013), p2=(0.038, 0.113, 0.013), material_id="pec")
gv1 = gprMax.GeometryView(p1=(0, 0, 0),
p2=(x, y, z),
dl=(dl, dl, dl),
filename=Path(*parts[:-1], f'{parts[-1]}_n'),
output_type='n',)
gv2 = gprMax.GeometryView(p1=(0, 0, 0),
p2=(x, y, z),
dl=(dl, dl, dl),
filename=Path(*parts[:-1], f'{parts[-1]}_f'),
output_type='f',)
gv1 = gprMax.GeometryView(
p1=(0, 0, 0),
p2=(x, y, z),
dl=(dl, dl, dl),
filename=Path(*parts[:-1], f"{parts[-1]}_n"),
output_type="n",
)
gv2 = gprMax.GeometryView(
p1=(0, 0, 0),
p2=(x, y, z),
dl=(dl, dl, dl),
filename=Path(*parts[:-1], f"{parts[-1]}_f"),
output_type="f",
)
pmls = {'CFS-PML': {'pml': gprMax.PMLProps(formulation='HORIPML', thickness=10),
# Parameters from http://dx.doi.org/10.1109/TAP.2018.2823864
'pml_cfs': [gprMax.PMLCFS(alphascalingprofile='constant',
alphascalingdirection='forward',
alphamin=0.05, alphamax=0.05,
kappascalingprofile='quartic',
kappascalingdirection='forward',
kappamin=1, kappamax=8,
sigmascalingprofile='quartic',
sigmascalingdirection='forward',
sigmamin=0,
sigmamax=1.1 * ((4 + 1) / (150 * np.pi * dl)))]},
'HORIPML-1': {'pml': gprMax.PMLProps(formulation='HORIPML', thickness=10),
# Parameters from http://dx.doi.org/10.1109/TAP.2011.2180344
'pml_cfs': [gprMax.PMLCFS(alphascalingprofile='constant',
alphascalingdirection='forward',
alphamin=0, alphamax=0,
kappascalingprofile='quartic',
kappascalingdirection='forward',
kappamin=1, kappamax=12,
sigmascalingprofile='quartic',
sigmascalingdirection='forward',
sigmamin=0,
sigmamax=0.7 * ((4 + 1) / (150 * np.pi * dl)))]},
'HORIPML-2': {'pml': gprMax.PMLProps(formulation='HORIPML', thickness=10),
# Parameters from http://dx.doi.org/10.1109/TAP.2018.2823864
'pml_cfs': [gprMax.PMLCFS(alphascalingprofile='constant',
alphascalingdirection='forward',
alphamin=0, alphamax=0,
kappascalingprofile='constant',
kappascalingdirection='forward',
kappamin=1, kappamax=1,
sigmascalingprofile='sextic',
sigmascalingdirection='forward',
sigmamin=0,
sigmamax=0.275 / (150 * np.pi * dl)),
gprMax.PMLCFS(alphascalingprofile='sextic',
alphascalingdirection='forward',
alphamin=0.07, alphamax=0.07 + (0.275 / (150 * np.pi * dl)),
kappascalingprofile='cubic',
kappascalingdirection='forward',
kappamin=1, kappamax=8,
sigmascalingprofile='quadratic',
sigmascalingdirection='forward',
sigmamin=0,
sigmamax=2.75 / (150 * np.pi * dl))]},
'MRIPML-1': {'pml': gprMax.PMLProps(formulation='MRIPML', thickness=10),
# Parameters from Antonis' MATLAB script (M3Dparams.m)
'pml_cfs': [gprMax.PMLCFS(alphascalingprofile='constant',
alphascalingdirection='forward',
alphamin=0.05, alphamax=0.05,
kappascalingprofile='quartic',
kappascalingdirection='forward',
kappamin=1, kappamax=8,
sigmascalingprofile='quartic',
sigmascalingdirection='forward',
sigmamin=0,
sigmamax=1.1 * ((4 + 1) / (150 * np.pi * dl)))]},
'MRIPML-2': {'pml': gprMax.PMLProps(formulation='MRIPML', thickness=10),
# Parameters from http://dx.doi.org/10.1109/TAP.2018.2823864
'pml_cfs': [gprMax.PMLCFS(alphascalingprofile='quadratic',
alphascalingdirection='reverse',
alphamin=0, alphamax=0.15,
kappascalingprofile='quartic',
kappascalingdirection='forward',
kappamin=1, kappamax=12,
sigmascalingprofile='quartic',
sigmascalingdirection='forward',
sigmamin=0,
sigmamax=0.65 * ((4 + 1) / (150 * np.pi * dl))),
gprMax.PMLCFS(alphascalingprofile='linear',
alphascalingdirection='reverse',
alphamin=0.07, alphamax=0.8,
kappascalingprofile='constant',
kappascalingdirection='forward',
kappamin=0, kappamax=0,
sigmascalingprofile='quadratic',
sigmascalingdirection='forward',
sigmamin=0,
sigmamax=0.65 * ((2 + 1) / (150 * np.pi * dl)))]}
}
pmls = {
"CFS-PML": {
"pml": gprMax.PMLProps(formulation="HORIPML", thickness=10),
# Parameters from http://dx.doi.org/10.1109/TAP.2018.2823864
"pml_cfs": [
gprMax.PMLCFS(
alphascalingprofile="constant",
alphascalingdirection="forward",
alphamin=0.05,
alphamax=0.05,
kappascalingprofile="quartic",
kappascalingdirection="forward",
kappamin=1,
kappamax=8,
sigmascalingprofile="quartic",
sigmascalingdirection="forward",
sigmamin=0,
sigmamax=1.1 * ((4 + 1) / (150 * np.pi * dl)),
)
],
},
"HORIPML-1": {
"pml": gprMax.PMLProps(formulation="HORIPML", thickness=10),
# Parameters from http://dx.doi.org/10.1109/TAP.2011.2180344
"pml_cfs": [
gprMax.PMLCFS(
alphascalingprofile="constant",
alphascalingdirection="forward",
alphamin=0,
alphamax=0,
kappascalingprofile="quartic",
kappascalingdirection="forward",
kappamin=1,
kappamax=12,
sigmascalingprofile="quartic",
sigmascalingdirection="forward",
sigmamin=0,
sigmamax=0.7 * ((4 + 1) / (150 * np.pi * dl)),
)
],
},
"HORIPML-2": {
"pml": gprMax.PMLProps(formulation="HORIPML", thickness=10),
# Parameters from http://dx.doi.org/10.1109/TAP.2018.2823864
"pml_cfs": [
gprMax.PMLCFS(
alphascalingprofile="constant",
alphascalingdirection="forward",
alphamin=0,
alphamax=0,
kappascalingprofile="constant",
kappascalingdirection="forward",
kappamin=1,
kappamax=1,
sigmascalingprofile="sextic",
sigmascalingdirection="forward",
sigmamin=0,
sigmamax=0.275 / (150 * np.pi * dl),
),
gprMax.PMLCFS(
alphascalingprofile="sextic",
alphascalingdirection="forward",
alphamin=0.07,
alphamax=0.07 + (0.275 / (150 * np.pi * dl)),
kappascalingprofile="cubic",
kappascalingdirection="forward",
kappamin=1,
kappamax=8,
sigmascalingprofile="quadratic",
sigmascalingdirection="forward",
sigmamin=0,
sigmamax=2.75 / (150 * np.pi * dl),
),
],
},
"MRIPML-1": {
"pml": gprMax.PMLProps(formulation="MRIPML", thickness=10),
# Parameters from Antonis' MATLAB script (M3Dparams.m)
"pml_cfs": [
gprMax.PMLCFS(
alphascalingprofile="constant",
alphascalingdirection="forward",
alphamin=0.05,
alphamax=0.05,
kappascalingprofile="quartic",
kappascalingdirection="forward",
kappamin=1,
kappamax=8,
sigmascalingprofile="quartic",
sigmascalingdirection="forward",
sigmamin=0,
sigmamax=1.1 * ((4 + 1) / (150 * np.pi * dl)),
)
],
},
"MRIPML-2": {
"pml": gprMax.PMLProps(formulation="MRIPML", thickness=10),
# Parameters from http://dx.doi.org/10.1109/TAP.2018.2823864
"pml_cfs": [
gprMax.PMLCFS(
alphascalingprofile="quadratic",
alphascalingdirection="reverse",
alphamin=0,
alphamax=0.15,
kappascalingprofile="quartic",
kappascalingdirection="forward",
kappamin=1,
kappamax=12,
sigmascalingprofile="quartic",
sigmascalingdirection="forward",
sigmamin=0,
sigmamax=0.65 * ((4 + 1) / (150 * np.pi * dl)),
),
gprMax.PMLCFS(
alphascalingprofile="linear",
alphascalingdirection="reverse",
alphamin=0.07,
alphamax=0.8,
kappascalingprofile="constant",
kappascalingdirection="forward",
kappamin=0,
kappamax=0,
sigmascalingprofile="quadratic",
sigmascalingdirection="forward",
sigmamin=0,
sigmamax=0.65 * ((2 + 1) / (150 * np.pi * dl)),
),
],
},
}
scenes = []
for k, v in pmls.items():
scene = gprMax.Scene()
title = gprMax.Title(name=fn.with_suffix('').name + '_' + k)
title = gprMax.Title(name=fn.with_suffix("").name + "_" + k)
scene.add(title)
scene.add(domain)
scene.add(dxdydz)
@@ -137,8 +187,8 @@ for k, v in pmls.items():
# scene.add(gv1)
# scene.add(gv2)
scene.add(v['pml'])
for pml_cfs in v['pml_cfs']:
scene.add(v["pml"])
for pml_cfs in v["pml_cfs"]:
scene.add(pml_cfs)
scenes.append(scene)

查看文件

@@ -20,42 +20,47 @@ dxdydz = gprMax.Discretisation(p1=(dl, dl, dl))
time_window = gprMax.TimeWindow(iterations=2100)
tssf = gprMax.TimeStepStabilityFactor(f=0.99)
waveform = gprMax.Waveform(wave_type='gaussiandotnorm', amp=1, freq=9.42e9, id='mypulse')
hertzian_dipole = gprMax.HertzianDipole(polarisation='z',
p1=(0.088, 0.088, 0.089),
waveform_id='mypulse')
waveform = gprMax.Waveform(wave_type="gaussiandotnorm", amp=1, freq=9.42e9, id="mypulse")
hertzian_dipole = gprMax.HertzianDipole(polarisation="z", p1=(0.088, 0.088, 0.089), waveform_id="mypulse")
rx = gprMax.Rx(p1=(0.113, 0.189, 0.088))
plate = gprMax.Plate(p1=(0.088, 0.088, 0.088),
p2=(0.113, 0.188, 0.088), material_id='pec')
plate = gprMax.Plate(p1=(0.088, 0.088, 0.088), p2=(0.113, 0.188, 0.088), material_id="pec")
gv1 = gprMax.GeometryView(p1=(0, 0, 0),
p2=(x, y, z),
dl=(dl, dl, dl),
filename=Path(*parts[:-1], f'{parts[-1]}_n'),
output_type='n',)
gv2 = gprMax.GeometryView(p1=(0, 0, 0),
p2=(x, y, z),
dl=(dl, dl, dl),
filename=Path(*parts[:-1], f'{parts[-1]}_f'),
output_type='f',)
gv1 = gprMax.GeometryView(
p1=(0, 0, 0),
p2=(x, y, z),
dl=(dl, dl, dl),
filename=Path(*parts[:-1], f"{parts[-1]}_n"),
output_type="n",
)
gv2 = gprMax.GeometryView(
p1=(0, 0, 0),
p2=(x, y, z),
dl=(dl, dl, dl),
filename=Path(*parts[:-1], f"{parts[-1]}_f"),
output_type="f",
)
pml = gprMax.PMLProps(formulation='HORIPML', thickness=10)
pml = gprMax.PMLProps(formulation="HORIPML", thickness=10)
# Parameters from http://dx.doi.org/10.1109/TAP.2018.2823864
pml_cfs = gprMax.PMLCFS(alphascalingprofile='constant',
alphascalingdirection='forward',
alphamin=0.05, alphamax=0.05,
kappascalingprofile='quartic',
kappascalingdirection='forward',
kappamin=1, kappamax=8,
sigmascalingprofile='quartic',
sigmascalingdirection='forward',
sigmamin=0,
sigmamax=1.1 * ((4 + 1) / (150 * np.pi * dl)))
pml_cfs = gprMax.PMLCFS(
alphascalingprofile="constant",
alphascalingdirection="forward",
alphamin=0.05,
alphamax=0.05,
kappascalingprofile="quartic",
kappascalingdirection="forward",
kappamin=1,
kappamax=8,
sigmascalingprofile="quartic",
sigmascalingdirection="forward",
sigmamin=0,
sigmamax=1.1 * ((4 + 1) / (150 * np.pi * dl)),
)
scene = gprMax.Scene()
title = gprMax.Title(name=fn.with_suffix('').name + '_ref')
title = gprMax.Title(name=fn.with_suffix("").name + "_ref")
scene.add(title)
scene.add(domain)
scene.add(dxdydz)

查看文件

@@ -17,83 +17,88 @@ domain = gprMax.Domain(p1=(x, y, z))
dxdydz = gprMax.Discretisation(p1=(dl, dl, dl))
time_window = gprMax.TimeWindow(time=3e-9)
waveform = gprMax.Waveform(wave_type='gaussian', amp=1, freq=1e9, id='mypulse')
hertzian_dipole = gprMax.HertzianDipole(polarisation='z',
p1=(0.050, 0.050, 0.050),
waveform_id='mypulse')
waveform = gprMax.Waveform(wave_type="gaussian", amp=1, freq=1e9, id="mypulse")
hertzian_dipole = gprMax.HertzianDipole(polarisation="z", p1=(0.050, 0.050, 0.050), waveform_id="mypulse")
rx = gprMax.Rx(p1=(0.070, 0.070, 0.070))
# PML cases
thick = 10 # thickness
cases = {'off': {'x0': 0, 'y0': 0, 'z0': 0, 'xmax': 0, 'ymax': 0, 'zmax':0},
'x0': {'x0': thick, 'y0': 0, 'z0': 0, 'xmax': 0, 'ymax': 0, 'zmax':0},
'y0': {'x0': 0, 'y0': thick, 'z0': 0, 'xmax': 0, 'ymax': 0, 'zmax':0},
'z0': {'x0': 0, 'y0': 0, 'z0': thick, 'xmax': 0, 'ymax': 0, 'zmax':0},
'xmax': {'x0': 0, 'y0': 0, 'z0': 0, 'xmax': thick, 'ymax': 0, 'zmax':0},
'ymax': {'x0': 0, 'y0': 0, 'z0': 0, 'xmax': 0, 'ymax': thick, 'zmax':0},
'zmax': {'x0': 0, 'y0': 0, 'z0': 0, 'xmax': 0, 'ymax': 0, 'zmax': thick}}
thick = 10 # thickness
cases = {
"off": {"x0": 0, "y0": 0, "z0": 0, "xmax": 0, "ymax": 0, "zmax": 0},
"x0": {"x0": thick, "y0": 0, "z0": 0, "xmax": 0, "ymax": 0, "zmax": 0},
"y0": {"x0": 0, "y0": thick, "z0": 0, "xmax": 0, "ymax": 0, "zmax": 0},
"z0": {"x0": 0, "y0": 0, "z0": thick, "xmax": 0, "ymax": 0, "zmax": 0},
"xmax": {"x0": 0, "y0": 0, "z0": 0, "xmax": thick, "ymax": 0, "zmax": 0},
"ymax": {"x0": 0, "y0": 0, "z0": 0, "xmax": 0, "ymax": thick, "zmax": 0},
"zmax": {"x0": 0, "y0": 0, "z0": 0, "xmax": 0, "ymax": 0, "zmax": thick},
}
# PML formulation
pml_type = gprMax.PMLProps(formulation='HORIPML')
pml_type = gprMax.PMLProps(formulation="HORIPML")
## Built-in 1st order PML
pml_cfs = gprMax.PMLCFS(alphascalingprofile='constant',
alphascalingdirection='forward',
alphamin=0, alphamax=0,
kappascalingprofile='constant',
kappascalingdirection='forward',
kappamin=1, kappamax=1,
sigmascalingprofile='quartic',
sigmascalingdirection='forward',
sigmamin=0, sigmamax=None)
pml_cfs = gprMax.PMLCFS(
alphascalingprofile="constant",
alphascalingdirection="forward",
alphamin=0,
alphamax=0,
kappascalingprofile="constant",
kappascalingdirection="forward",
kappamin=1,
kappamax=1,
sigmascalingprofile="quartic",
sigmascalingdirection="forward",
sigmamin=0,
sigmamax=None,
)
## PMLs from http://dx.doi.org/10.1109/TAP.2011.2180344
## Standard PML
# pml_cfs = gprMax.PMLCFS(alphascalingprofile='constant',
# alphascalingdirection='forward',
# pml_cfs = gprMax.PMLCFS(alphascalingprofile='constant',
# alphascalingdirection='forward',
# alphamin=0, alphamax=0,
# kappascalingprofile='quartic',
# kappascalingdirection='forward',
# kappamin=1, kappamax=11,
# sigmascalingprofile='quartic',
# sigmascalingdirection='forward',
# kappascalingprofile='quartic',
# kappascalingdirection='forward',
# kappamin=1, kappamax=11,
# sigmascalingprofile='quartic',
# sigmascalingdirection='forward',
# sigmamin=0, sigmamax=7.427)
## CFS PML
# pml_cfs = gprMax.PMLCFS(alphascalingprofile='constant',
# alphascalingdirection='forward',
# pml_cfs = gprMax.PMLCFS(alphascalingprofile='constant',
# alphascalingdirection='forward',
# alphamin=0.05, alphamax=0.05,
# kappascalingprofile='quartic',
# kappascalingdirection='forward',
# kappamin=1, kappamax=7,
# sigmascalingprofile='quartic',
# sigmascalingdirection='forward',
# kappascalingprofile='quartic',
# kappascalingdirection='forward',
# kappamin=1, kappamax=7,
# sigmascalingprofile='quartic',
# sigmascalingdirection='forward',
# sigmamin=0, sigmamax=11.671)
## 2nd order RIPML
# pml_cfs1 = gprMax.PMLCFS(alphascalingprofile='constant',
# alphascalingdirection='forward',
# pml_cfs1 = gprMax.PMLCFS(alphascalingprofile='constant',
# alphascalingdirection='forward',
# alphamin=0, alphamax=0,
# kappascalingprofile='constant',
# kappascalingdirection='forward',
# kappamin=1, kappamax=1,
# sigmascalingprofile='sextic',
# sigmascalingdirection='forward',
# kappascalingprofile='constant',
# kappascalingdirection='forward',
# kappamin=1, kappamax=1,
# sigmascalingprofile='sextic',
# sigmascalingdirection='forward',
# sigmamin=0, sigmamax=0.5836)
# pml_cfs2 = gprMax.PMLCFS(alphascalingprofile='constant',
# alphascalingdirection='forward',
# pml_cfs2 = gprMax.PMLCFS(alphascalingprofile='constant',
# alphascalingdirection='forward',
# alphamin=0.05, alphamax=0.05,
# kappascalingprofile='cubic',
# kappascalingdirection='forward',
# kappamin=1, kappamax=8,
# sigmascalingprofile='quadratic',
# sigmascalingdirection='forward',
# kappascalingprofile='cubic',
# kappascalingdirection='forward',
# kappamin=1, kappamax=8,
# sigmascalingprofile='quadratic',
# sigmascalingdirection='forward',
# sigmamin=0, sigmamax=5.8357)
scenes = []
for k, v in cases.items():
scene = gprMax.Scene()
title = gprMax.Title(name=fn.with_suffix('').name + '_' + k)
title = gprMax.Title(name=fn.with_suffix("").name + "_" + k)
scene.add(title)
scene.add(domain)
scene.add(dxdydz)
@@ -102,11 +107,11 @@ for k, v in cases.items():
scene.add(hertzian_dipole)
scene.add(rx)
pml = gprMax.PMLProps(formulation='HORIPML', **v)
pml = gprMax.PMLProps(formulation="HORIPML", **v)
scene.add(pml)
scene.add(pml_cfs)
scenes.append(scene)
# Run model
gprMax.run(scenes=scenes, n=len(cases), geometry_only=False, outputfile=fn)
gprMax.run(scenes=scenes, n=len(cases), geometry_only=False, outputfile=fn)