你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-08 07:24:19 +08:00
add hybrid Differential Evolution alghoritm
这个提交包含在:
@@ -52,9 +52,10 @@ class Relaxation(object):
|
||||
(not neglected as default: True).
|
||||
:type save: bool, optional, default:True
|
||||
:param optimizer: chosen optimization method:
|
||||
Particle Swarm, Genetic or Dual Annealing
|
||||
(Default: Particle_swarm).
|
||||
:type optimizer: Optimizer class, optional, default:Particle_swarm
|
||||
Hybrid Particle Swarm-Damped Least-Squares,
|
||||
Genetic or Dual Annealing (DA)
|
||||
(Default: PSO_DLS).
|
||||
:type optimizer: Optimizer class, optional
|
||||
:param optimizer_options: Additional keyword arguments passed to
|
||||
optimizer class (Default: empty dict).
|
||||
:type optimizer_options: dict, optional, default: empty dict
|
||||
@@ -64,7 +65,7 @@ class Relaxation(object):
|
||||
material_name, f_n=50,
|
||||
number_of_debye_poles=-1,
|
||||
plot=True, save=True,
|
||||
optimizer=Particle_swarm,
|
||||
optimizer=PSO_DLS,
|
||||
optimizer_options={}):
|
||||
self.name = 'Relaxation function'
|
||||
self.params = {}
|
||||
@@ -139,13 +140,13 @@ class Relaxation(object):
|
||||
""" Calling the main optimisation module with defined lower and upper boundaries of search.
|
||||
|
||||
Returns:
|
||||
xpm (ndarray): The logarithm with base 10 of relaxation times of the Debyes poles.
|
||||
mx (ndarray): Resulting optimised weights for the given relaxation times.
|
||||
tau (ndarray): The optimised relaxation times.
|
||||
weights (ndarray): Resulting optimised weights for the given relaxation times.
|
||||
ee (float): Average error between the actual and the approximated real part.
|
||||
rp (ndarray): The real part of the permittivity for the optimised relaxation
|
||||
times and weights for the frequnecies included in freq.
|
||||
ip (ndarray): The imaginary part of the permittivity for the optimised
|
||||
relaxation times and weights for the frequnecies included in freq.
|
||||
rl (ndarray): Real parts of chosen relaxation function
|
||||
for given frequency points.
|
||||
im (ndarray): Imaginary parts of chosen relaxation function
|
||||
for given frequency points.
|
||||
"""
|
||||
# Define the lower and upper boundaries of search
|
||||
lb = np.full(self.number_of_debye_poles,
|
||||
@@ -153,14 +154,13 @@ class Relaxation(object):
|
||||
ub = np.full(self.number_of_debye_poles,
|
||||
-np.log10(np.min(self.freq)) + 3)
|
||||
# Call optimizer to minimize the cost function
|
||||
xmp, _ = self.optimizer.fit(func=cost_function,
|
||||
lb=lb, ub=ub,
|
||||
funckwargs={'rl_g': self.rl,
|
||||
'im_g': self.im,
|
||||
'freq_g': self.freq}
|
||||
)
|
||||
_, _, mx, ee, rp, ip = DLS(self.rl, self.im, xmp, self.freq)
|
||||
return xmp, mx, ee, rp, ip
|
||||
tau, weights, ee, rl, im = self.optimizer.fit(func=self.optimizer.cost_function,
|
||||
lb=lb, ub=ub,
|
||||
funckwargs={'rl': self.rl,
|
||||
'im': self.im,
|
||||
'freq': self.freq}
|
||||
)
|
||||
return tau, weights, ee, rl, im
|
||||
|
||||
def run(self):
|
||||
""" Solve the problem described by the given relaxation function
|
||||
@@ -182,6 +182,10 @@ class Relaxation(object):
|
||||
xmp, mx, ee, rp, ip = self.optimize()
|
||||
# Print the results in gprMax format style
|
||||
properties = self.print_output(xmp, mx, ee)
|
||||
err_real, err_imag = self.error(rp + ee, ip)
|
||||
print(f'The average fractional error for:\n'
|
||||
f'- real part: {err_real}\n'
|
||||
f'- imaginary part: {err_imag}\n')
|
||||
if self.save:
|
||||
self.save_result(properties)
|
||||
# Plot the actual and the approximate dielectric properties
|
||||
@@ -265,6 +269,25 @@ class Relaxation(object):
|
||||
ax.set_ylabel("Approximation error (%)")
|
||||
plt.show()
|
||||
|
||||
def error(self, rl_exp, im_exp):
|
||||
""" Calculate the average fractional error separately for
|
||||
relative permittivity (real part) and conductivity (imaginary part)
|
||||
|
||||
Args:
|
||||
rl_exp (ndarray): Real parts of optimised Debye expansion
|
||||
for given frequency points (plus average error).
|
||||
im_exp (ndarray): Imaginary parts of optimised Debye expansion
|
||||
for given frequency points.
|
||||
Returns:
|
||||
avg_err_real (float): average fractional error
|
||||
for relative permittivity (real part)
|
||||
avg_err_imag (float): average fractional error
|
||||
for conductivity (imaginary part)
|
||||
"""
|
||||
avg_err_real = np.sum(np.abs((rl_exp - self.rl)/self.rl) * 100)/len(rl_exp)
|
||||
avg_err_imag = np.sum(np.abs((im_exp - self.im)/self.im) * 100)/len(im_exp)
|
||||
return avg_err_real, avg_err_imag
|
||||
|
||||
@staticmethod
|
||||
def save_result(output, fdir="../materials"):
|
||||
""" Save the resulting Debye parameters in a gprMax format.
|
||||
@@ -328,7 +351,7 @@ class HavriliakNegami(Relaxation):
|
||||
sigma, mu, mu_sigma, material_name,
|
||||
number_of_debye_poles=-1, f_n=50,
|
||||
plot=False, save=True,
|
||||
optimizer=Particle_swarm,
|
||||
optimizer=PSO_DLS,
|
||||
optimizer_options={}):
|
||||
super(HavriliakNegami, self).__init__(sigma=sigma, mu=mu, mu_sigma=mu_sigma,
|
||||
material_name=material_name, f_n=f_n,
|
||||
@@ -398,7 +421,7 @@ class Jonscher(Relaxation):
|
||||
sigma, mu, mu_sigma,
|
||||
material_name, number_of_debye_poles=-1,
|
||||
f_n=50, plot=False, save=True,
|
||||
optimizer=Particle_swarm,
|
||||
optimizer=PSO_DLS,
|
||||
optimizer_options={}):
|
||||
super(Jonscher, self).__init__(sigma=sigma, mu=mu, mu_sigma=mu_sigma,
|
||||
material_name=material_name, f_n=f_n,
|
||||
@@ -431,7 +454,7 @@ class Jonscher(Relaxation):
|
||||
if self.n_p > 1:
|
||||
sys.exit("n_p value must range between 0-1 (0 <= n_p <= 1)")
|
||||
if self.f_min == self.f_max:
|
||||
sys.exit("Error: Null frequency range")
|
||||
sys.exit("Error: Null frequency range!")
|
||||
|
||||
def calculation(self):
|
||||
"""Calculates the Q function for the given parameters"""
|
||||
@@ -462,7 +485,7 @@ class Crim(Relaxation):
|
||||
materials, sigma, mu, mu_sigma, material_name,
|
||||
number_of_debye_poles=-1, f_n=50,
|
||||
plot=False, save=True,
|
||||
optimizer=Particle_swarm,
|
||||
optimizer=PSO_DLS,
|
||||
optimizer_options={}):
|
||||
|
||||
super(Crim, self).__init__(sigma=sigma, mu=mu, mu_sigma=mu_sigma,
|
||||
@@ -553,7 +576,7 @@ class Rawdata(Relaxation):
|
||||
material_name, number_of_debye_poles=-1,
|
||||
f_n=50, delimiter =',',
|
||||
plot=False, save=True,
|
||||
optimizer=Particle_swarm,
|
||||
optimizer=PSO_DLS,
|
||||
optimizer_options={}):
|
||||
|
||||
super(Rawdata, self).__init__(sigma=sigma, mu=mu, mu_sigma=mu_sigma,
|
||||
@@ -619,10 +642,20 @@ if __name__ == "__main__":
|
||||
material_name="Kelley",
|
||||
number_of_debye_poles=5, f_n=100,
|
||||
plot=True, save=False,
|
||||
optimizer=Dual_annealing,
|
||||
optimizer=DA,
|
||||
optimizer_options={'seed': 111})
|
||||
setup.run()
|
||||
### Testing setup
|
||||
setup = HavriliakNegami(f_min=1e7, f_max=1e11,
|
||||
alpha=1-0.09, beta=0.45,
|
||||
e_inf=2.7, de=8.6-2.7, tau_0=9.4e-10,
|
||||
sigma=0, mu=0, mu_sigma=0,
|
||||
material_name="Kelley",
|
||||
number_of_debye_poles=5, f_n=100,
|
||||
plot=True, save=False,
|
||||
optimizer=DE,
|
||||
optimizer_options={'seed': 111})
|
||||
setup.run()
|
||||
'''### Testing setup
|
||||
setup = Rawdata("Test.txt", 0.1, 1, 0.1, "M1", 3, plot=True,
|
||||
optimizer_options={'seed': 111,
|
||||
'pflag': True})
|
||||
@@ -640,4 +673,4 @@ if __name__ == "__main__":
|
||||
materials = np.array([material1, material2])
|
||||
setup = Crim(1*1e-1, 1e-9, 0.5, f, materials, 0.1,
|
||||
1, 0, "M4", 2, plot=True)
|
||||
setup.run()
|
||||
setup.run()'''
|
||||
|
@@ -24,7 +24,7 @@ from tqdm import tqdm
|
||||
|
||||
class Optimizer(object):
|
||||
"""
|
||||
Create particle swarm optimisation object.
|
||||
Create choosen optimisation object.
|
||||
|
||||
:param maxiter: The maximum number of iterations for the
|
||||
optimizer (Default: 1000).
|
||||
@@ -36,14 +36,57 @@ class Optimizer(object):
|
||||
def __init__(self, maxiter=1000, seed=None):
|
||||
self.maxiter = maxiter
|
||||
self.seed = seed
|
||||
self.calc_weights = DLS
|
||||
|
||||
def fit(self):
|
||||
"""
|
||||
Call the optimization function that tries to find an optimal set
|
||||
def fit(self, func, lb, ub, funckwargs={}):
|
||||
"""Call the optimization function that tries to find an optimal set
|
||||
of relaxation times that minimise the error
|
||||
between the actual and the approximated electric permittivity.
|
||||
between the actual and the approximated electric permittivity
|
||||
and calculate optimised weights for the given relaxation times.
|
||||
|
||||
Args:
|
||||
func (function): The function to be minimized.
|
||||
lb (ndarray): The lower bounds of the design variable(s).
|
||||
ub (ndarray): The upper bounds of the design variable(s).
|
||||
funckwargs (dict): Additional keyword arguments passed to
|
||||
objective and constraint function
|
||||
(Default: empty dict).
|
||||
|
||||
Returns:
|
||||
tau (ndarray): The the best relaxation times.
|
||||
weights (ndarray): Resulting optimised weights for the given relaxation times.
|
||||
ee (float): Average error between the actual and the approximated real part.
|
||||
rl (ndarray): Real parts of chosen relaxation function
|
||||
for given frequency points.
|
||||
im (ndarray): Imaginary parts of chosen relaxation function
|
||||
for given frequency points.
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
np.random.seed(self.seed)
|
||||
# find the relaxation frequencies using Differential Evolution
|
||||
tau, _ = self.calc_relaxation_times(func, lb, ub, funckwargs)
|
||||
# find the weights using a damped least squares
|
||||
_, _, weights, ee, rl_exp, im_exp = self.calc_weights(tau, **funckwargs)
|
||||
return tau, weights, ee, rl_exp, im_exp
|
||||
|
||||
@staticmethod
|
||||
def cost_function(x, rl, im, freq):
|
||||
"""
|
||||
The cost function is the average error between
|
||||
the actual and the approximated electric permittivity.
|
||||
|
||||
Args:
|
||||
x (ndarray): The logarithm with base 10 of relaxation times of the Debyes poles.
|
||||
rl (ndarray): Real parts of chosen relaxation function
|
||||
for given frequency points.
|
||||
im (ndarray): Imaginary parts of chosen relaxation function
|
||||
for given frequency points.
|
||||
freq (ndarray): The frequencies vector for defined grid.
|
||||
|
||||
Returns:
|
||||
cost (float): Sum of mean absolute errors for real and imaginary parts.
|
||||
"""
|
||||
cost_i, cost_r, _, _, _, _ = DLS(x, rl, im, freq)
|
||||
return cost_i + cost_r
|
||||
|
||||
@staticmethod
|
||||
def plot(x, y):
|
||||
@@ -66,9 +109,9 @@ class Optimizer(object):
|
||||
plt.pause(0.0001)
|
||||
|
||||
|
||||
class Particle_swarm(Optimizer):
|
||||
"""
|
||||
Create particle swarm optimisation object with predefined parameters.
|
||||
class PSO_DLS(Optimizer):
|
||||
""" Create hybrid Particle Swarm-Damped Least Squares optimisation
|
||||
object with predefined parameters.
|
||||
|
||||
:param swarmsize: The number of particles in the swarm (Default: 40).
|
||||
:type swarmsize: int, optional
|
||||
@@ -98,7 +141,7 @@ class Particle_swarm(Optimizer):
|
||||
minstep=1e-8, minfun=1e-8,
|
||||
pflag=False, seed=None):
|
||||
|
||||
super(Particle_swarm, self).__init__(maxiter, seed)
|
||||
super(PSO_DLS, self).__init__(maxiter, seed)
|
||||
self.swarmsize = swarmsize
|
||||
self.omega = omega
|
||||
self.phip = phip
|
||||
@@ -107,7 +150,7 @@ class Particle_swarm(Optimizer):
|
||||
self.minfun = minfun
|
||||
self.pflag = pflag
|
||||
|
||||
def fit(self, func, lb, ub, funckwargs={}):
|
||||
def calc_relaxation_times(self, func, lb, ub, funckwargs={}):
|
||||
"""
|
||||
A particle swarm optimisation that tries to find an optimal set
|
||||
of relaxation times that minimise the error
|
||||
@@ -124,7 +167,7 @@ class Particle_swarm(Optimizer):
|
||||
(Default: empty dict).
|
||||
|
||||
Returns:
|
||||
g (ndarray): The swarm's best known position (optimal design).
|
||||
g (ndarray): The swarm's best known position (relaxation times).
|
||||
fg (float): The objective value at ``g``.
|
||||
"""
|
||||
np.random.seed(self.seed)
|
||||
@@ -217,75 +260,23 @@ class Particle_swarm(Optimizer):
|
||||
else:
|
||||
xpp.append(it)
|
||||
ypp.append(fg)
|
||||
Particle_swarm.plot(xpp, ypp)
|
||||
PSO_DLS.plot(xpp, ypp)
|
||||
return g, fg
|
||||
|
||||
|
||||
class Dual_annealing(Optimizer):
|
||||
"""
|
||||
Create dual annealing object with predefined parameters.
|
||||
|
||||
:param maxiter: The maximum number of iterations for the swarm
|
||||
to search (Default: 1000).
|
||||
:type maxiter: int, optional
|
||||
:param local_search_options: Extra keyword arguments to be passed
|
||||
to the local minimizer, reffer to
|
||||
scipy.optimize.minimize() function
|
||||
(Default: empty dict).
|
||||
:type local_search_options: dict, optional
|
||||
:param initial_temp (float): The initial temperature, use higher values to
|
||||
facilitates a wider search of the energy
|
||||
landscape, allowing dual_annealing to escape
|
||||
local minima that it is trapped in.
|
||||
Range is (0.01, 5.e4] (Default: 5230).
|
||||
:type initial_temp: float, optional
|
||||
:param restart_temp_ratio: During the annealing process,
|
||||
temperature is decreasing, when it
|
||||
reaches initial_temp * restart_temp_ratio,
|
||||
the reannealing process is triggered.
|
||||
Range is (0, 1) (Default: 2e-5).
|
||||
:type restart_temp_ratio: float, optional
|
||||
:param visit: Parameter for visiting distribution. The value range is (1, 3]
|
||||
(Default: 2.62).
|
||||
:type visit: float, optional
|
||||
:param accept: Parameter for acceptance distribution. It is used to control
|
||||
the probability of acceptance. The lower the acceptance parameter,
|
||||
the smaller the probability of acceptance. The value range (-1e4, -5]
|
||||
(Default: -5.0).
|
||||
:type accept: float, optional
|
||||
:param no_local_search (bool): If no_local_search is set to True, a traditional
|
||||
Generalized Simulated Annealing will be performed
|
||||
with no local search strategy applied (Default: False).
|
||||
:type no_local_search: bool, optional
|
||||
:param maxfun: Soft limit for the number of objective function calls.
|
||||
(Default: 1e7).
|
||||
:type maxfun: int, optional
|
||||
:param callback: A callback function with signature callback(x, f, context),
|
||||
which will be called for all minima found.
|
||||
x and f are the coordinates and function value of
|
||||
the latest minimum found, and context has value in [0, 1, 2],
|
||||
with the following meaning:
|
||||
0: minimum detected in the annealing process.
|
||||
1: detection occurred in the local search process.
|
||||
2: detection done in the dual annealing process.
|
||||
If the callback implementation returns True,
|
||||
the algorithm will stop.
|
||||
:type callback: None, callable, optional
|
||||
:param x0: Coordinates of a single N-D starting point, shape(n,).
|
||||
(Default: None).
|
||||
:type x0: None, ndarray, optional
|
||||
:param seed: Specify seed for repeatable minimizations.
|
||||
The random numbers generated with this seed only
|
||||
affect the visiting distribution function and
|
||||
new coordinates generation (Default: None).
|
||||
:type seed: None, int, optional
|
||||
class DA(Optimizer):
|
||||
""" Create Dual Annealing object with predefined parameters.
|
||||
The current class is a modified edition of the scipy.optimize
|
||||
package which can be found at:
|
||||
https://docs.scipy.org/doc/scipy/reference/generated/
|
||||
scipy.optimize.dual_annealing.html#scipy.optimize.dual_annealing
|
||||
"""
|
||||
def __init__(self, maxiter=1000,
|
||||
local_search_options={}, initial_temp=5230.0,
|
||||
restart_temp_ratio=2e-05, visit=2.62, accept=-5.0,
|
||||
maxfun=1e7, no_local_search=False,
|
||||
callback=None, x0=None, seed=None):
|
||||
super(Dual_annealing, self).__init__(maxiter, seed)
|
||||
super(DA, self).__init__(maxiter, seed)
|
||||
self.local_search_options = local_search_options
|
||||
self.initial_temp = initial_temp
|
||||
self.restart_temp_ratio = restart_temp_ratio
|
||||
@@ -296,7 +287,7 @@ class Dual_annealing(Optimizer):
|
||||
self.callback = callback
|
||||
self.x0 = x0
|
||||
|
||||
def fit(self, func, lb, ub, funckwargs={}):
|
||||
def calc_relaxation_times(self, func, lb, ub, funckwargs={}):
|
||||
"""
|
||||
Find the global minimum of a function using Dual Annealing.
|
||||
The current class is a modified edition of the scipy.optimize
|
||||
@@ -306,15 +297,15 @@ class Dual_annealing(Optimizer):
|
||||
|
||||
Args:
|
||||
func (function): The function to be minimized
|
||||
lb (array): The lower bounds of the design variable(s)
|
||||
ub (array): The upper bounds of the design variable(s)
|
||||
lb (ndarray): The lower bounds of the design variable(s)
|
||||
ub (ndarray): The upper bounds of the design variable(s)
|
||||
funckwargs (dict): Additional keyword arguments passed to
|
||||
objective and constraint function
|
||||
(Default: empty dict)
|
||||
|
||||
Returns:
|
||||
g (array): The solution array (optimal design).
|
||||
fg (float): The objective value at the solution.
|
||||
x (ndarray): The solution array (relaxation times).
|
||||
fun (float): The objective value at the best solution.
|
||||
"""
|
||||
np.random.seed(self.seed)
|
||||
result = scipy.optimize.dual_annealing(func,
|
||||
@@ -330,22 +321,92 @@ class Dual_annealing(Optimizer):
|
||||
no_local_search=self.no_local_search,
|
||||
callback=self.callback,
|
||||
x0=self.x0)
|
||||
print(result.message)
|
||||
return result.x, result.fun
|
||||
|
||||
|
||||
def DLS(rl, im, logt, freq):
|
||||
class DE(Optimizer):
|
||||
"""
|
||||
Create Differential Evolution-Damped Least Squares object with predefined parameters.
|
||||
The current class is a modified edition of the scipy.optimize
|
||||
package which can be found at:
|
||||
https://docs.scipy.org/doc/scipy/reference/generated/
|
||||
scipy.optimize.differential_evolution.html#scipy.optimize.differential_evolution
|
||||
"""
|
||||
def __init__(self, maxiter=1000,
|
||||
strategy='best1bin', popsize=15, tol=0.01, mutation=(0.5, 1),
|
||||
recombination=0.7, callback=None, disp=False, polish=True,
|
||||
init='latinhypercube', atol=0, updating='immediate', workers=1,
|
||||
constraints=(), seed=None):
|
||||
super(DE, self).__init__(maxiter, seed)
|
||||
self.strategy = strategy
|
||||
self.popsize = popsize
|
||||
self.tol = tol
|
||||
self.mutation = mutation
|
||||
self.recombination = recombination
|
||||
self.callback = callback
|
||||
self.disp = disp
|
||||
self.polish = polish
|
||||
self.init= init
|
||||
self.atol = atol
|
||||
self.updating = updating
|
||||
self.workers = workers
|
||||
self.constraints = constraints
|
||||
|
||||
def calc_relaxation_times(self, func, lb, ub, funckwargs={}):
|
||||
"""
|
||||
Find the global minimum of a function using Differential Evolution.
|
||||
The current class is a modified edition of the scipy.optimize
|
||||
package which can be found at:
|
||||
https://docs.scipy.org/doc/scipy/reference/generated/
|
||||
scipy.optimize.differential_evolution.html#scipy.optimize.differential_evolution
|
||||
|
||||
Args:
|
||||
func (function): The function to be minimized
|
||||
lb (ndarray): The lower bounds of the design variable(s)
|
||||
ub (ndarray): The upper bounds of the design variable(s)
|
||||
funckwargs (dict): Additional keyword arguments passed to
|
||||
objective and constraint function
|
||||
(Default: empty dict)
|
||||
|
||||
Returns:
|
||||
x (ndarray): The solution array (relaxation times).
|
||||
fun (float): The objective value at the best solution.
|
||||
"""
|
||||
np.random.seed(self.seed)
|
||||
result = scipy.optimize.differential_evolution(func,
|
||||
bounds=list(zip(lb, ub)),
|
||||
args=funckwargs.values(),
|
||||
strategy=self.strategy,
|
||||
popsize=self.popsize,
|
||||
tol=self.tol,
|
||||
mutation=self.mutation,
|
||||
recombination=self.recombination,
|
||||
callback=self.callback,
|
||||
disp=self.disp,
|
||||
polish=self.polish,
|
||||
init=self.init,
|
||||
atol=self.atol,
|
||||
updating=self.updating,
|
||||
workers=self.workers,
|
||||
constraints=self.constraints)
|
||||
print(result.message)
|
||||
return result.x, result.fun
|
||||
|
||||
|
||||
def DLS(logt, rl, im, freq):
|
||||
"""
|
||||
Find the weights using a non-linear least squares (LS) method,
|
||||
the Levenberg–Marquardt algorithm (LMA or just LM),
|
||||
also known as the damped least-squares (DLS) method.
|
||||
|
||||
Args:
|
||||
logt (ndarray): The best known position form optimization module (optimal design),
|
||||
the logarithm with base 10 of relaxation times of the Debyes poles.
|
||||
rl (ndarray): Real parts of chosen relaxation function
|
||||
for given frequency points.
|
||||
im (ndarray): Imaginary parts of chosen relaxation function
|
||||
for given frequency points.
|
||||
logt (ndarray): The best known position form optimization module (optimal design),
|
||||
the logarithm with base 10 of relaxation times of the Debyes poles.
|
||||
freq (ndarray): The frequencies vector for defined grid.
|
||||
|
||||
Returns:
|
||||
@@ -364,36 +425,16 @@ def DLS(rl, im, logt, freq):
|
||||
# logt=log10(t0) for efficiency during the optimisation
|
||||
# Here they are transformed back t0=10**logt
|
||||
tt = 10**logt
|
||||
# y = Ax , here the A matrix for the real and the imaginary part is builded
|
||||
# y = Ax, here the A matrix for the real and the imaginary part is builded
|
||||
d = 1 / (1 + 1j * 2 * np.pi * np.repeat(
|
||||
freq, len(tt)).reshape((-1, len(tt))) * tt)
|
||||
# Adding dumping (Levenberg–Marquardt algorithm)
|
||||
# Solving the overdetermined system y=Ax
|
||||
x = np.abs(np.linalg.lstsq(d.imag, im, rcond=-1)[0]) # absolute damped least-squares solution
|
||||
x = np.abs(np.linalg.lstsq(d.imag, im, rcond=None)[0]) # absolute damped least-squares solution
|
||||
rp, ip = np.matmul(d.real, x[np.newaxis].T).T[0], np.matmul(d.imag, x[np.newaxis].T).T[0]
|
||||
cost_i = np.sum(np.abs(ip-im))/len(im)
|
||||
ee = np.mean(rl - rp)
|
||||
if ee < 1:
|
||||
ee = 1
|
||||
cost_r = np.sum(np.abs(rp - rl + ee))/len(im)
|
||||
cost_r = np.sum(np.abs(rp + ee - rl))/len(im)
|
||||
return cost_i, cost_r, x, ee, rp, ip
|
||||
|
||||
|
||||
def cost_function(x, rl_g, im_g, freq_g):
|
||||
"""
|
||||
The cost function is the average error between
|
||||
the actual and the approximated electric permittivity.
|
||||
|
||||
Args:
|
||||
x (ndarray): The logarithm with base 10 of relaxation times of the Debyes poles.
|
||||
rl_g (ndarray): Real parts of chosen relaxation function
|
||||
for given frequency points.
|
||||
im_g (ndarray): Imaginary parts of chosen relaxation function
|
||||
for given frequency points.
|
||||
freq (ndarray): The frequencies vector for defined grid.
|
||||
|
||||
Returns:
|
||||
cost (float): Sum of mean absolute errors for real and imaginary part.
|
||||
"""
|
||||
cost_i, cost_r, _, _, _, _ = DLS(rl_g, im_g, x, freq_g)
|
||||
return cost_i + cost_r
|
||||
|
在新工单中引用
屏蔽一个用户