try with automatically setting number of Debye poles

这个提交包含在:
majsylw
2021-07-21 21:25:31 +02:00
父节点 49378b35b7
当前提交 cf3eae5ad8

查看文件

@@ -108,11 +108,9 @@ class Relaxation(object):
self.sigma, self.mu, self.mu_sigma]] self.sigma, self.mu, self.mu_sigma]]
except ValueError: except ValueError:
sys.exit("The inputs should be numeric.") sys.exit("The inputs should be numeric.")
if self.number_of_debye_poles <= 0:
sys.exit("The number of Debye poles must be positive.")
if not isinstance(self.number_of_debye_poles, int): if not isinstance(self.number_of_debye_poles, int):
sys.exit("The number of Debye poles must be integer.") sys.exit("The number of Debye poles must be integer.")
if (np.array(d) < 0).sum() != 0: if (np.array(d[1:]) < 0).sum() != 0:
sys.exit("The inputs should be positive.") sys.exit("The inputs should be positive.")
def calculation(self): def calculation(self):
@@ -180,13 +178,30 @@ class Relaxation(object):
q = self.calculation() q = self.calculation()
# Set the real and the imaginary part of the relaxation function # Set the real and the imaginary part of the relaxation function
self.rl, self.im = q.real, q.imag self.rl, self.im = q.real, q.imag
if self.number_of_debye_poles == -1:
error = np.infty # artificial best error starting value
self.number_of_debye_poles = 1
iteration = 1
# stop increasing number of Debye poles if error is smaller then 5%
# or 20 debye poles is reached
while error > 5 and iteration < 21:
# Calling the main optimisation module # Calling the main optimisation module
tau, weights, ee, rl, im = self.optimize()
err_real, err_imag = self.error(rl + ee, im)
error = err_real + err_imag
self.number_of_debye_poles += 1
iteration += 1
else:
# Calling the main optimisation module
# for choosen number of debye poles
# if one of the weights is negative increase the stabiliser # if one of the weights is negative increase the stabiliser
# and repeat the optimisation # and repeat the optimisation
xmp, mx, ee, rp, ip = self.optimize() tau, weights, ee, rl, im = self.optimize()
err_real, err_imag = self.error(rl + ee, im)
# Print the results in gprMax format style # Print the results in gprMax format style
properties = self.print_output(xmp, mx, ee) properties = self.print_output(tau, weights, ee)
err_real, err_imag = self.error(rp + ee, ip)
print(f'The average fractional error for:\n' print(f'The average fractional error for:\n'
f'- real part: {err_real}\n' f'- real part: {err_real}\n'
f'- imaginary part: {err_imag}\n') f'- imaginary part: {err_imag}\n')
@@ -194,16 +209,16 @@ class Relaxation(object):
self.save_result(properties) self.save_result(properties)
# Plot the actual and the approximate dielectric properties # Plot the actual and the approximate dielectric properties
if self.plot: if self.plot:
self.plot_result(rp + ee, ip) self.plot_result(rl + ee, im)
return err_real + err_imag return err_real + err_imag
def print_output(self, xmp, mx, ee): def print_output(self, tau, weights, ee):
""" Print out the resulting Debye parameters in a gprMax format. """ Print out the resulting Debye parameters in a gprMax format.
Args: Args:
xpm (ndarray): The best known position form optimization module tau (ndarray): The best known position form optimization module
(optimal design). (optimal design).
mx (ndarray): Resulting optimised weights for the given relaxation times. weights (ndarray): Resulting optimised weights for the given relaxation times.
ee (float): Average error between the actual and the approximated real part. ee (float): Average error between the actual and the approximated real part.
Returns: Returns:
@@ -213,10 +228,10 @@ class Relaxation(object):
print("Debye expansion parameters: ") print("Debye expansion parameters: ")
print(f" |{'e_inf':^14s}|{'De':^14s}|{'log(tau_0)':^25s}|") print(f" |{'e_inf':^14s}|{'De':^14s}|{'log(tau_0)':^25s}|")
print("_" * 65) print("_" * 65)
for i in range(0, len(xmp)): for i in range(0, len(tau)):
print("Debye {0:}|{1:^14.5f}|{2:^14.5f}|{3:^25.5f}|" print("Debye {0:}|{1:^14.5f}|{2:^14.5f}|{3:^25.5f}|"
.format(i + 1, ee/len(xmp), mx[i], .format(i + 1, ee/len(tau), weights[i],
xmp[i])) tau[i]))
print("_" * 65) print("_" * 65)
# Print the Debye expnasion in a gprMax format # Print the Debye expnasion in a gprMax format
@@ -226,9 +241,9 @@ class Relaxation(object):
self.mu_sigma, self.mu_sigma,
self.material_name)) self.material_name))
print(material_prop[0], end="") print(material_prop[0], end="")
dispersion_prop = "#add_dispersion_debye: {}".format(len(xmp)) dispersion_prop = "#add_dispersion_debye: {}".format(len(tau))
for i in range(len(xmp)): for i in range(len(tau)):
dispersion_prop += " {} {}".format(mx[i], 10**xmp[i]) dispersion_prop += " {} {}".format(weights[i], 10**tau[i])
dispersion_prop += " {}".format(self.material_name) dispersion_prop += " {}".format(self.material_name)
print(dispersion_prop) print(dispersion_prop)
material_prop.append(dispersion_prop + '\n') material_prop.append(dispersion_prop + '\n')
@@ -627,8 +642,7 @@ if __name__ == "__main__":
alpha=0.91, beta=0.45, alpha=0.91, beta=0.45,
e_inf=2.7, de=8.6-2.7, tau_0=9.4e-10, e_inf=2.7, de=8.6-2.7, tau_0=9.4e-10,
sigma=0, mu=0, mu_sigma=0, sigma=0, mu=0, mu_sigma=0,
material_name="Kelley", material_name="Kelley", f_n=100,
number_of_debye_poles=5, f_n=100,
plot=True, save=False, plot=True, save=False,
optimizer_options={'swarmsize':30, optimizer_options={'swarmsize':30,
'maxiter':100, 'maxiter':100,
@@ -644,8 +658,7 @@ if __name__ == "__main__":
alpha=1-0.09, beta=0.45, alpha=1-0.09, beta=0.45,
e_inf=2.7, de=8.6-2.7, tau_0=9.4e-10, e_inf=2.7, de=8.6-2.7, tau_0=9.4e-10,
sigma=0, mu=0, mu_sigma=0, sigma=0, mu=0, mu_sigma=0,
material_name="Kelley", material_name="Kelley", f_n=100,
number_of_debye_poles=5, f_n=100,
plot=True, save=False, plot=True, save=False,
optimizer=DA, optimizer=DA,
optimizer_options={'seed': 111}) optimizer_options={'seed': 111})
@@ -654,28 +667,26 @@ if __name__ == "__main__":
alpha=1-0.09, beta=0.45, alpha=1-0.09, beta=0.45,
e_inf=2.7, de=8.6-2.7, tau_0=9.4e-10, e_inf=2.7, de=8.6-2.7, tau_0=9.4e-10,
sigma=0, mu=0, mu_sigma=0, sigma=0, mu=0, mu_sigma=0,
material_name="Kelley", material_name="Kelley", f_n=100,
number_of_debye_poles=5, f_n=100,
plot=True, save=False, plot=True, save=False,
optimizer=DE, optimizer=DE,
optimizer_options={'seed': 111}) optimizer_options={'seed': 111})
setup.run() setup.run()
### Testing setup ### Testing setup
setup = Rawdata("Test.txt", 0.1, 1, 0.1, "M1", 3, plot=True, setup = Rawdata("Test.txt", 0.1, 1, 0.1, "M1", plot=True,
optimizer_options={'seed': 111, optimizer_options={'seed': 111})
'pflag': True})
setup.run() setup.run()
np.random.seed(111) np.random.seed(111)
setup = HavriliakNegami(1e12, 1e-3, 0.5, 1, 10, 5, setup = HavriliakNegami(1e12, 1e-3, 0.5, 1, 10, 5,
1e-6, 0.1, 1, 0, "M2", 6, plot=True) 1e-6, 0.1, 1, 0, "M2", plot=True)
setup.run() setup.run()
setup = Jonscher(1e6, 1e-5, 50, 1, 1e5, 0.7, setup = Jonscher(1e6, 1e-5, 50, 1, 1e5, 0.7,
0.1, 1, 0.1, "M3", 4, plot=True) 0.1, 1, 0.1, "M3", plot=True)
setup.run() setup.run()
f = np.array([0.5, 0.5]) f = np.array([0.5, 0.5])
material1 = [3, 25, 1e6] material1 = [3, 25, 1e6]
material2 = [3, 0, 1e3] material2 = [3, 0, 1e3]
materials = np.array([material1, material2]) materials = np.array([material1, material2])
setup = Crim(1*1e-1, 1e-9, 0.5, f, materials, 0.1, setup = Crim(1*1e-1, 1e-9, 0.5, f, materials, 0.1,
1, 0, "M4", 2, plot=True) 1, 0, "M4", plot=True)
setup.run() setup.run()