gprMax refactor rough

这个提交包含在:
John Hartley
2019-07-31 12:04:22 +01:00
父节点 06b427fdaa
当前提交 c8b8baf7cd

查看文件

@@ -16,58 +16,11 @@
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
"""gprMax.gprMax: provides entry point main()."""
from .config import create_simulation_config
from .contexts import create_runner
from .solvers import create_solver
import argparse
import datetime
import os
import sys
from enum import Enum
# There is a bug with threading and MKL on macOS
# (https://github.com/gprMax/gprMax/issues/195) . Setting the MKL threading
# layer to sequential solves it, but must be done before numpy is imported.
if sys.platform == 'darwin':
os.environ["MKL_THREADING_LAYER"] = 'sequential'
import h5py
import numpy as np
from ._version import __version__
from ._version import codename
import gprMax.config as config
from .exceptions import GeneralError
from .model_build_run import run_model
from .utilities import detect_check_gpus
from .utilities import get_terminal_width
from .utilities import human_size
from .utilities import logo
from .utilities import open_path_file
from .utilities import timer
def main():
"""This is the main function for gprMax."""
# Parse command line arguments
parser = argparse.ArgumentParser(prog='gprMax', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('inputfile', help='path to, and name of inputfile or file object')
parser.add_argument('-n', default=1, type=int, help='number of times to run the input file, e.g. to create a B-scan')
parser.add_argument('-task', type=int, help='task identifier (model number) for job array on Open Grid Scheduler/Grid Engine (http://gridscheduler.sourceforge.net/index.html)')
parser.add_argument('-restart', type=int, help='model number to restart from, e.g. when creating B-scan')
parser.add_argument('-mpi', type=int, help='number of MPI tasks, i.e. master + workers')
parser.add_argument('--mpi-no-spawn', action='store_true', default=False, help='flag to use MPI without spawn mechanism')
parser.add_argument('--mpi-worker', action='store_true', default=False, help=argparse.SUPPRESS)
parser.add_argument('-gpu', type=int, action='append', nargs='*', help='flag to use Nvidia GPU or option to give list of device ID(s)')
parser.add_argument('-benchmark', action='store_true', default=False, help='flag to switch on benchmarking mode')
parser.add_argument('--geometry-only', action='store_true', default=False, help='flag to only build model and produce geometry file(s)')
parser.add_argument('--geometry-fixed', action='store_true', default=False, help='flag to not reprocess model geometry, e.g. for B-scans where the geometry is fixed')
parser.add_argument('--write-processed', action='store_true', default=False, help='flag to write an input file after any Python code and include commands in the original input file have been processed')
args = parser.parse_args()
run_main(args)
def api(
inputfile,
@@ -106,412 +59,30 @@ def api(
run_main(args)
def main():
"""This is the main function for gprMax."""
# Parse command line arguments
parser = argparse.ArgumentParser(prog='gprMax', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('inputfile', help='path to, and name of inputfile or file object')
parser.add_argument('-n', default=1, type=int, help='number of times to run the input file, e.g. to create a B-scan')
parser.add_argument('-task', type=int, help='task identifier (model number) for job array on Open Grid Scheduler/Grid Engine (http://gridscheduler.sourceforge.net/index.html)')
parser.add_argument('-restart', type=int, help='model number to restart from, e.g. when creating B-scan')
parser.add_argument('-mpi', type=int, help='number of MPI tasks, i.e. master + workers')
parser.add_argument('--mpi-no-spawn', action='store_true', default=False, help='flag to use MPI without spawn mechanism')
parser.add_argument('--mpi-worker', action='store_true', default=False, help=argparse.SUPPRESS)
parser.add_argument('-gpu', type=int, action='append', nargs='*', help='flag to use Nvidia GPU or option to give list of device ID(s)')
parser.add_argument('-benchmark', action='store_true', default=False, help='flag to switch on benchmarking mode')
parser.add_argument('--geometry-only', action='store_true', default=False, help='flag to only build model and produce geometry file(s)')
parser.add_argument('--geometry-fixed', action='store_true', default=False, help='flag to not reprocess model geometry, e.g. for B-scans where the geometry is fixed')
parser.add_argument('--write-processed', action='store_true', default=False, help='flag to write an input file after any Python code and include commands in the original input file have been processed')
args = parser.parse_args()
run_main(args)
def run_main(args):
"""
Top-level function that controls what mode of simulation (standard/optimsation/benchmark etc...) is run.
Args:
args (dict): Namespace with input arguments from command line or api.
"""
# Print gprMax logo, version, and licencing/copyright information
logo(__version__ + ' (' + codename + ')')
# Print information about host machine
hyperthreading = ', {} cores with HT'.format(config.hostinfo['logicalcores']) if config.hostinfo['hyperthreading'] else ''
print('\nHost: {} | {} | {} x {} ({} cores{}) | {} RAM | {}'.format(config.hostinfo['hostname'],
config.hostinfo['machineID'], config.hostinfo['sockets'], config.hostinfo['cpuID'], config.hostinfo['physicalcores'],
hyperthreading, human_size(config.hostinfo['ram'], a_kilobyte_is_1024_bytes=True), config.hostinfo['osversion']))
# Get information/setup any Nvidia GPU(s)
if args.gpu is not None:
# Flatten a list of lists
if any(isinstance(element, list) for element in args.gpu):
args.gpu = [val for sublist in args.gpu for val in sublist]
config.cuda['gpus'], allgpustext = detect_check_gpus(args.gpu)
print('GPU(s): {}'.format(' | '.join(allgpustext)))
# Process input file
with open_path_file(args.inputfile) as inputfile:
# Create a separate namespace that users can access in any Python code blocks in the input file
usernamespace = {'c': config.c, 'e0': config.e0, 'm0': config.m0, 'z0': config.z0, 'number_model_runs': args.n, 'inputfile': os.path.abspath(inputfile.name)}
#######################################
# Process for benchmarking simulation #
#######################################
if args.benchmark:
if args.mpi or args.task or args.n > 1:
raise GeneralError('Benchmarking mode cannot be combined with MPI, job array mode, or multiple model runs.')
run_benchmark_sim(args, inputfile, usernamespace)
################################################
# Process for standard simulation (CPU or GPU) #
################################################
else:
# Mixed mode MPI with OpenMP or CUDA - MPI task farm for models with each model parallelised with OpenMP (CPU) or CUDA (GPU)
if args.mpi:
if args.n == 1:
raise GeneralError('MPI is not beneficial when there is only one model to run')
if args.task:
raise GeneralError('MPI cannot be combined with job array mode')
run_mpi_sim(args, inputfile, usernamespace)
# Alternate MPI configuration that does not use MPI spawn mechanism
elif args.mpi_no_spawn:
if args.n == 1:
raise GeneralError('MPI is not beneficial when there is only one model to run')
if args.task:
raise GeneralError('MPI cannot be combined with job array mode')
run_mpi_no_spawn_sim(args, inputfile, usernamespace)
# Standard behaviour - models run serially with each model parallelised with OpenMP (CPU) or CUDA (GPU)
else:
if args.task and args.restart:
raise GeneralError('Job array and restart modes cannot be used together')
if config.cuda['gpus']:
config.cuda['gpus'] = config.cuda['gpus'][0]
run_std_sim(args, inputfile, usernamespace)
def run_std_sim(args, inputfile, usernamespace):
"""
Run standard simulation - models are run one after another and each model
is parallelised using either OpenMP (CPU) or CUDA (GPU)
Args:
args (dict): Namespace with command line arguments
inputfile (object): File object for the input file.
usernamespace (dict): Namespace that can be accessed by user in any
Python code blocks in input file.
"""
# Set range for number of models to run
if args.task:
# Job array feeds args.n number of single tasks
modelstart = args.task
modelend = args.task + 1
elif args.restart:
modelstart = args.restart
modelend = modelstart + args.n
else:
modelstart = 1
modelend = modelstart + args.n
numbermodelruns = args.n
tsimstart = timer()
for currentmodelrun in range(modelstart, modelend):
run_model(args, currentmodelrun, modelend - 1, numbermodelruns, inputfile, usernamespace)
tsimend = timer()
simcompletestr = '\n=== Simulation on {} completed in [HH:MM:SS]: {}'.format(config.hostinfo['hostname'], datetime.timedelta(seconds=tsimend - tsimstart))
print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))
def run_benchmark_sim(args, inputfile, usernamespace):
"""
Run standard simulation in benchmarking mode - models are run one
after another and each model is parallelised using either OpenMP (CPU)
or CUDA (GPU)
Args:
args (dict): Namespace with command line arguments
inputfile (object): File object for the input file.
usernamespace (dict): Namespace that can be accessed by user in any
Python code blocks in input file.
"""
# Store information about host machine
hyperthreading = ', {} cores with HT'.format(config.hostinfo['logicalcores']) if config.hostinfo['hyperthreading'] else ''
machineIDlong = '{}; {} x {} ({} cores{}); {} RAM; {}'.format(config.hostinfo['machineID'], config.hostinfo['sockets'], config.hostinfo['cpuID'], config.hostinfo['physicalcores'], hyperthreading, human_size(config.hostinfo['ram'], a_kilobyte_is_1024_bytes=True), config.hostinfo['osversion'])
# Initialise arrays to hold CPU thread info and times, and GPU info and times
cputhreads = np.array([], dtype=np.int32)
cputimes = np.array([])
gpuIDs = []
gputimes = np.array([])
# CPU only benchmarking
if args.gpu is None:
# Number of CPU threads to benchmark - start from single thread and double threads until maximum number of physical cores
threads = 1
maxthreads = config.hostinfo['physicalcores']
maxthreadspersocket = config.hostinfo['physicalcores'] / config.hostinfo['sockets']
while threads < maxthreadspersocket:
cputhreads = np.append(cputhreads, int(threads))
threads *= 2
# Check for system with only single thread
if cputhreads.size == 0:
cputhreads = np.append(cputhreads, threads)
# Add maxthreadspersocket and maxthreads if necessary
if cputhreads[-1] != maxthreadspersocket:
cputhreads = np.append(cputhreads, int(maxthreadspersocket))
if cputhreads[-1] != maxthreads:
cputhreads = np.append(cputhreads, int(maxthreads))
cputhreads = cputhreads[::-1]
cputimes = np.zeros(len(cputhreads))
numbermodelruns = len(cputhreads)
# GPU only benchmarking
else:
# Set size of array to store GPU runtimes and number of runs of model required
for gpu in args.gpu:
gpuIDs.append(gpu.name)
gputimes = np.zeros(len(args.gpu))
numbermodelruns = len(args.gpu)
# Store GPU information in a temp variable
gpus = args.gpu
usernamespace['number_model_runs'] = numbermodelruns
modelend = numbermodelruns + 1
for currentmodelrun in range(1, modelend):
# Run CPU benchmark
if args.gpu is None:
os.environ['OMP_NUM_THREADS'] = str(cputhreads[currentmodelrun - 1])
cputimes[currentmodelrun - 1] = run_model(args, currentmodelrun, modelend - 1, numbermodelruns, inputfile, usernamespace)
# Run GPU benchmark
else:
args.gpu = gpus[(currentmodelrun - 1)]
os.environ['OMP_NUM_THREADS'] = str(config.hostinfo['physicalcores'])
gputimes[(currentmodelrun - 1)] = run_model(args, currentmodelrun, modelend - 1, numbermodelruns, inputfile, usernamespace)
# Get model size (in cells) and number of iterations
if currentmodelrun == 1:
if numbermodelruns == 1:
outputfile = os.path.splitext(args.inputfile)[0] + '.out'
else:
outputfile = os.path.splitext(args.inputfile)[0] + str(currentmodelrun) + '.out'
f = h5py.File(outputfile, 'r')
iterations = f.attrs['Iterations']
numcells = f.attrs['nx_ny_nz']
# Save number of threads and benchmarking times to NumPy archive
np.savez(os.path.splitext(inputfile.name)[0], machineID=machineIDlong, gpuIDs=gpuIDs, cputhreads=cputhreads, cputimes=cputimes, gputimes=gputimes, iterations=iterations, numcells=numcells, version=__version__)
simcompletestr = '\n=== Simulation completed'
print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))
def run_mpi_sim(args, inputfile, usernamespace):
"""
Run mixed mode MPI/OpenMP simulation - MPI task farm for models with
each model parallelised using either OpenMP (CPU) or CUDA (GPU)
Args:
args (dict): Namespace with command line arguments
inputfile (object): File object for the input file.
usernamespace (dict): Namespace that can be accessed by user in any
Python code blocks in input file.
"""
from mpi4py import MPI
status = MPI.Status()
hostname = MPI.Get_processor_name()
# Set range for number of models to run
modelstart = args.restart if args.restart else 1
modelend = modelstart + args.n
numbermodelruns = args.n
# Command line flag used to indicate a spawned worker instance
workerflag = '--mpi-worker'
numworkers = args.mpi - 1
##################
# Master process #
##################
if workerflag not in sys.argv:
# N.B Spawned worker flag (--mpi-worker) applied to sys.argv when MPI.Spawn is called
# See if the MPI communicator object is being passed as an argument (likely from a MPI.Split)
if hasattr(args, 'mpicomm'):
comm = args.mpicomm
else:
comm = MPI.COMM_WORLD
tsimstart = timer()
mpistartstr = '\n=== MPI task farm (USING MPI Spawn)'
print('{} {}'.format(mpistartstr, '=' * (get_terminal_width() - 1 - len(mpistartstr))))
print('=== MPI master ({}, rank: {}) on {} spawning {} workers...'.format(comm.name, comm.Get_rank(), hostname, numworkers))
# Assemble a sys.argv replacement to pass to spawned worker
# N.B This is required as sys.argv not available when gprMax is called via api()
# Ignore mpicomm object if it exists as only strings can be passed via spawn
myargv = []
for key, value in vars(args).items():
if value:
# Input file name always comes first
if 'inputfile' in key:
myargv.append(value)
elif 'gpu' in key:
myargv.append('-' + key)
# Add GPU device ID(s) from GPU objects
for gpu in args.gpu:
myargv.append(str(gpu.deviceID))
elif 'mpicomm' in key:
pass
elif '_' in key:
key = key.replace('_', '-')
myargv.append('--' + key)
else:
myargv.append('-' + key)
if value is not True:
myargv.append(str(value))
# Create a list of work
worklist = []
for model in range(modelstart, modelend):
workobj = dict()
workobj['currentmodelrun'] = model
workobj['mpicommname'] = comm.name
worklist.append(workobj)
# Add stop sentinels
worklist += ([StopIteration] * numworkers)
# Spawn workers
newcomm = comm.Spawn(sys.executable, args=['-m', 'gprMax'] + myargv + [workerflag], maxprocs=numworkers)
# Reply to whoever asks until done
for work in worklist:
newcomm.recv(source=MPI.ANY_SOURCE, status=status)
newcomm.send(obj=work, dest=status.Get_source())
# Shutdown communicators
newcomm.Disconnect()
tsimend = timer()
simcompletestr = '\n=== MPI master ({}, rank: {}) on {} completed simulation in [HH:MM:SS]: {}'.format(comm.name, comm.Get_rank(), hostname, datetime.timedelta(seconds=tsimend - tsimstart))
print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))
##################
# Worker process #
##################
elif workerflag in sys.argv:
# Connect to parent to get communicator
try:
comm = MPI.Comm.Get_parent()
rank = comm.Get_rank()
except ValueError:
raise ValueError('MPI worker could not connect to parent')
# Select GPU and get info
gpuinfo = ''
if args.gpu is not None:
# Set device ID based on rank from list of GPUs
args.gpu = args.gpu[rank]
gpuinfo = ' using {} - {}, {} RAM '.format(args.gpu.deviceID, args.gpu.name, human_size(args.gpu.totalmem, a_kilobyte_is_1024_bytes=True))
# Ask for work until stop sentinel
for work in iter(lambda: comm.sendrecv(0, dest=0), StopIteration):
currentmodelrun = work['currentmodelrun']
# Run the model
print('Starting MPI spawned worker (parent: {}, rank: {}) on {} with model {}/{}{}\n'.format(work['mpicommname'], rank, hostname, currentmodelrun, numbermodelruns, gpuinfo))
tsolve = run_model(args, currentmodelrun, modelend - 1, numbermodelruns, inputfile, usernamespace)
print('Completed MPI spawned worker (parent: {}, rank: {}) on {} with model {}/{}{} in [HH:MM:SS]: {}\n'.format(work['mpicommname'], rank, hostname, currentmodelrun, numbermodelruns, gpuinfo, datetime.timedelta(seconds=tsolve)))
# Shutdown
comm.Disconnect()
def run_mpi_no_spawn_sim(args, inputfile, usernamespace):
"""
Alternate MPI implementation that avoids using the MPI spawn mechanism.
This implementation is designed to be used as
e.g. 'mpirun -n 5 python -m gprMax user_models/mymodel.in -n 10 --mpi-no-spawn'
Run mixed mode MPI/OpenMP simulation - MPI task farm for models with
each model parallelised using either OpenMP (CPU) or CUDA (GPU)
Args:
args (dict): Namespace with command line arguments
inputfile (object): File object for the input file.
usernamespace (dict): Namespace that can be accessed by user in any
Python code blocks in input file.
"""
from mpi4py import MPI
# Define MPI message tags
tags = Enum('tags', {'READY': 0, 'DONE': 1, 'EXIT': 2, 'START': 3})
# Initializations and preliminaries
comm = MPI.COMM_WORLD
size = comm.Get_size() # total number of processes
rank = comm.Get_rank() # rank of this process
status = MPI.Status() # get MPI status object
hostname = MPI.Get_processor_name() # get name of processor/host
# Set range for number of models to run
modelstart = args.restart if args.restart else 1
modelend = modelstart + args.n
numbermodelruns = args.n
currentmodelrun = modelstart # can use -task argument to start numbering from something other than 1
numworkers = size - 1
##################
# Master process #
##################
if rank == 0:
tsimstart = timer()
mpistartstr = '\n=== MPI task farm (WITHOUT using MPI Spawn)'
print('{} {}'.format(mpistartstr, '=' * (get_terminal_width() - 1 - len(mpistartstr))))
print('=== MPI master ({}, rank: {}) on {} using {} workers...'.format(comm.name, comm.Get_rank(), hostname, numworkers))
closedworkers = 0
while closedworkers < numworkers:
comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=status)
source = status.Get_source()
tag = status.Get_tag()
# Worker is ready, so send it a task
if tag == tags.READY.value:
if currentmodelrun < modelend:
comm.send(currentmodelrun, dest=source, tag=tags.START.value)
currentmodelrun += 1
else:
comm.send(None, dest=source, tag=tags.EXIT.value)
# Worker has completed a task
elif tag == tags.DONE.value:
pass
# Worker has completed all tasks
elif tag == tags.EXIT.value:
closedworkers += 1
tsimend = timer()
simcompletestr = '\n=== MPI master ({}, rank: {}) on {} completed simulation in [HH:MM:SS]: {}'.format(comm.name, comm.Get_rank(), hostname, datetime.timedelta(seconds=tsimend - tsimstart))
print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))
##################
# Worker process #
##################
else:
# Get info and setup device ID for GPU(s)
gpuinfo = ''
if args.gpu is not None:
# Set device ID based on rank from list of GPUs
deviceID = (rank - 1) % len(args.gpu)
args.gpu = next(gpu for gpu in args.gpu if gpu.deviceID == deviceID)
gpuinfo = ' using {} - {}, {}'.format(args.gpu.deviceID, args.gpu.name, human_size(args.gpu.totalmem, a_kilobyte_is_1024_bytes=True))
while True:
comm.send(None, dest=0, tag=tags.READY.value)
# Receive a model number to run from the master
currentmodelrun = comm.recv(source=0, tag=MPI.ANY_TAG, status=status)
tag = status.Get_tag()
# Run a model
if tag == tags.START.value:
print('Starting MPI worker (parent: {}, rank: {}) on {} with model {}/{}{}\n'.format(comm.name, rank, hostname, currentmodelrun, numbermodelruns, gpuinfo))
tsolve = run_model(args, currentmodelrun, modelend - 1, numbermodelruns, inputfile, usernamespace)
comm.send(None, dest=0, tag=tags.DONE.value)
print('Completed MPI worker (parent: {}, rank: {}) on {} with model {}/{}{} in [HH:MM:SS]: {}\n'.format(comm.name, rank, hostname, currentmodelrun, numbermodelruns, gpuinfo, datetime.timedelta(seconds=tsolve)))
# Break out of loop when work receives exit message
elif tag == tags.EXIT.value:
break
comm.send(None, dest=0, tag=tags.EXIT.value)
sim_conf = create_simulation_config()
solver = create_solver(sim_config)
run = create_runner(sim_config)
run(sim_config, solver)