More updates to Taguchi optimisation docs.

这个提交包含在:
Craig Warren
2016-05-04 10:10:11 +01:00
父节点 7539510b43
当前提交 c80b7ab441
共有 7 个文件被更改,包括 104 次插入4 次删除

查看文件

之前

宽度:  |  高度:  |  大小: 443 KiB

之后

宽度:  |  高度:  |  大小: 443 KiB

查看文件

之前

宽度:  |  高度:  |  大小: 1.1 MiB

之后

宽度:  |  高度:  |  大小: 1.1 MiB

二进制文件未显示。

之后

宽度:  |  高度:  |  大小: 45 KiB

查看文件

之前

宽度:  |  高度:  |  大小: 92 KiB

之后

宽度:  |  高度:  |  大小: 92 KiB

查看文件

@@ -22,7 +22,7 @@ Information
AustinMan and AustinWoman (http://bit.ly/AustinMan) are open source electromagnetic voxel models of the human body, which are developed by the Computational Electromagnetics Group (http://www.ece.utexas.edu/research/areas/electromagnetics-acoustics) at The University of Texas at Austin (http://www.utexas.edu). The models are based on data from the National Library of Medicine’s Visible Human Project (https://www.nlm.nih.gov/research/visible/visible_human.html).
.. figure:: images/AustinMan_head.png
.. figure:: images/user_libs/AustinMan_head.png
:width: 600 px
FDTD geometry mesh showing the head of the AustinMan model (2x2x2mm^3).
@@ -68,7 +68,7 @@ To insert a 2x2x2mm^3 AustinMan with the lower left corner 40mm from the origin
For further information on the `#geometry_objects_file` see the section on object contruction commands in the :ref:`Input commands section <commands>`.
.. figure:: images/AustinMan.png
.. figure:: images/user_libs/AustinMan.png
:width: 300 px
FDTD geometry mesh showing the AustinMan body model (2x2x2mm^3).

查看文件

@@ -22,7 +22,7 @@ Information
#
# Please use the attribution at http://dx.doi.org/10.1190/1.3548506
The package features an optimisation technique based on Taguchi's method. It allows the user to define parameters in an input file and optimise their values based on a fitness function.
The package features an optimisation technique based on Taguchi's method. It allows users to define parameters in an input file and optimise their values based on a fitness function, for example it can be used to optimise material properties or geometry in a simulation.
Taguchi's method
@@ -44,11 +44,13 @@ Package overview
.. code-block:: none
antenna_bowtie_opt.in
OA_9_4_3_2.npy
OA_18_7_3_2.npy
optimisation_taguchi_fitness.py
optimisation_taguchi_plot.py
* ``antenna_bowtie_opt.in`` is a example model of a bowtie antenna where values of loading resistors are optimised.
* ``OA_9_4_3_2.npy`` and ``OA_18_7_3_2.npy`` are NumPy archives containing pre-built OAs from http://neilsloane.com/oadir/
* ``optimisation_taguchi_fitness.py`` is a module containing fitness functions. There are some pre-built ones but users should add their own here.
* ``optimisation_taguchi_plot.py`` is a module for plotting the results, such as parameter values and convergence history, from an optimisation process when it has completed.
@@ -58,7 +60,7 @@ Implementation
The process by which Taguchi's method optimises parameters is illustrated in the following figure.
.. figure:: images/taguchi_process.png
.. figure:: images/user_libs/taguchi_process.png
:width: 300 px
Process associated with Taguchi's method.
@@ -93,3 +95,8 @@ Example
The following example demonstrates using the Taguchi optimisation process to optimise values of loading resistors used in a bowtie antenna. The bowtie design features 3 slots in each arm of the bowtie where loading resistors are placed, and a substrate with a perimittivity of 4.8 is used. The antenna is modelled in free space, and an output point (the electric field value) is specified at a distance of 60 mm from the feed of the bowtie.
.. figure:: images/user_libs/antenna_bowtie_opt.png
:width: 600 px
FDTD geometry mesh showing bowtie antenna with slots and loading resistors.