你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 20:46:52 +08:00
Added compactness fitness function.
这个提交包含在:
@@ -5,6 +5,7 @@
|
||||
#
|
||||
# Please use the attribution at http://dx.doi.org/10.1190/1.3548506
|
||||
|
||||
import sys
|
||||
import h5py
|
||||
import numpy as np
|
||||
np.seterr(divide='ignore')
|
||||
@@ -33,10 +34,10 @@ def minvalue(filename, args):
|
||||
nrx = f.attrs['nrx']
|
||||
|
||||
for rx in range(1, nrx + 1):
|
||||
tmp = f['/rxs/rx' + str(rx) + '/']
|
||||
if tmp.attrs['Name'] in args['outputs']:
|
||||
fieldname = list(tmp.keys())[0]
|
||||
minvalue = np.amin(tmp[fieldname])
|
||||
output = f['/rxs/rx' + str(rx) + '/']
|
||||
if output.attrs['Name'] in args['outputs']:
|
||||
outputname = list(output.keys())[0]
|
||||
minvalue = np.amin(output[outputname])
|
||||
|
||||
return np.abs(minvalue)
|
||||
|
||||
@@ -56,10 +57,10 @@ def maxvalue(filename, args):
|
||||
nrx = f.attrs['nrx']
|
||||
|
||||
for rx in range(1, nrx + 1):
|
||||
tmp = f['/rxs/rx' + str(rx) + '/']
|
||||
if tmp.attrs['Name'] in args['outputs']:
|
||||
fieldname = list(tmp.keys())[0]
|
||||
maxvalue = np.amax(tmp[fieldname])
|
||||
output = f['/rxs/rx' + str(rx) + '/']
|
||||
if output.attrs['Name'] in args['outputs']:
|
||||
outputname = list(output.keys())[0]
|
||||
maxvalue = np.amax(output[outputname])
|
||||
|
||||
return maxvalue
|
||||
|
||||
@@ -88,16 +89,16 @@ def xcorr(filename, args):
|
||||
modeltime = np.arange(0, f.attrs['dt'] * f.attrs['Iterations'], f.attrs['dt'])
|
||||
|
||||
for rx in range(1, nrx + 1):
|
||||
tmp = f['/rxs/rx' + str(rx) + '/']
|
||||
if tmp.attrs['Name'] in args['outputs']:
|
||||
fieldname = list(tmp.keys())[0]
|
||||
modelresp = tmp[fieldname]
|
||||
output = f['/rxs/rx' + str(rx) + '/']
|
||||
if output.attrs['Name'] in args['outputs']:
|
||||
outputname = list(output.keys())[0]
|
||||
modelresp = output[outputname]
|
||||
# Convert field value (V/m) to voltage
|
||||
if fieldname == 'Ex':
|
||||
if outputname == 'Ex':
|
||||
modelresp *= -1 * f.attrs['dx, dy, dz'][0]
|
||||
elif fieldname == 'Ey':
|
||||
elif outputname == 'Ey':
|
||||
modelresp *= -1 * f.attrs['dx, dy, dz'][1]
|
||||
if fieldname == 'Ez':
|
||||
if outputname == 'Ez':
|
||||
modelresp *= -1 * f.attrs['dx, dy, dz'][2]
|
||||
|
||||
# Normalise respose from output file
|
||||
@@ -160,10 +161,10 @@ def min_sum_diffs(filename, args):
|
||||
diffdB = 0
|
||||
outputs = 0
|
||||
for rx in range(1, nrx + 1):
|
||||
tmp = f['/rxs/rx' + str(rx) + '/']
|
||||
if tmp.attrs['Name'] in args['outputs']:
|
||||
fieldname = list(tmp.keys())[0]
|
||||
modelresp = np.array(tmp[fieldname])
|
||||
output = f['/rxs/rx' + str(rx) + '/']
|
||||
if output.attrs['Name'] in args['outputs']:
|
||||
outputname = list(output.keys())[0]
|
||||
modelresp = np.array(output[outputname])
|
||||
# Calculate sum of differences
|
||||
tmp = 20 * np.log10(np.abs(modelresp - refresp) / np.amax(np.abs(refresp)))
|
||||
tmp = np.abs(np.sum(tmp[-np.isneginf(tmp)])) / len(tmp[-np.isneginf(tmp)])
|
||||
@@ -173,6 +174,56 @@ def min_sum_diffs(filename, args):
|
||||
return diffdB / outputs
|
||||
|
||||
|
||||
def compactness(filename, args):
|
||||
"""A measure of the compactness of a time domain signal.
|
||||
|
||||
Args:
|
||||
filename (str): Name of output file
|
||||
args (dict): 'outputs' key with a list of names (IDs) of outputs (rxs) from input file
|
||||
|
||||
Returns:
|
||||
compactness (float): Compactness value of signal
|
||||
"""
|
||||
|
||||
f = h5py.File(filename, 'r')
|
||||
nrx = f.attrs['nrx']
|
||||
dt = f.attrs['dt']
|
||||
iterations = f.attrs['Iterations']
|
||||
time = np.linspace(0, 1, iterations)
|
||||
time *= (iterations * dt)
|
||||
|
||||
for rx in range(1, nrx + 1):
|
||||
output = f['/rxs/rx' + str(rx) + '/']
|
||||
if output.attrs['Name'] in args['outputs']:
|
||||
outputname = list(output.keys())[0]
|
||||
outputdata = output[outputname]
|
||||
|
||||
# Get absolute maximum value in signal
|
||||
peak = np.amax([np.amax(outputdata), np.abs(np.amin(outputdata))])
|
||||
|
||||
# Get peaks and troughs in signal
|
||||
delta = peak / 50 # Considered a peak/trough if it has the max/min value, and was preceded (to the left) by a value lower by delta
|
||||
maxtab, mintab = peakdet(outputdata, delta)
|
||||
peaks = maxtab + mintab
|
||||
peaks.sort()
|
||||
|
||||
# Remove any peaks smaller than a threshold
|
||||
thresholdpeak = 1e-3
|
||||
peaks = [peak for peak in peaks if np.abs(outputdata[peak]) > thresholdpeak]
|
||||
|
||||
# Percentage of maximum value to measure compactness of signal
|
||||
durationthreshold = 2
|
||||
# Check if there is a peak/trough smaller than threshold
|
||||
durationthresholdexist = np.where(np.abs(outputdata[peaks]) < (peak * (durationthreshold / 100)))[0]
|
||||
if durationthresholdexist.size == 0:
|
||||
compactness = time[peaks[-1]]
|
||||
else:
|
||||
time2threshold = time[peaks[durationthresholdexist[0]]]
|
||||
compactness = time2threshold - time[min(peaks)]
|
||||
|
||||
return (1 / compactness)
|
||||
|
||||
|
||||
|
||||
######################################
|
||||
# Helper methods for signal analyses #
|
||||
@@ -213,6 +264,70 @@ def zero_crossings(x):
|
||||
npos = ~pos
|
||||
indexzeros = ((pos[:-1] & npos[1:]) | (npos[:-1] & pos[1:])).nonzero()[0]
|
||||
return indexzeros
|
||||
|
||||
|
||||
def peakdet(v, delta, x = None):
|
||||
"""Detect peaks and troughs in a vector (adapted from MATLAB script at http://billauer.co.il/peakdet.html).
|
||||
A point is considered a maximum peak if it has the maximal value, and was preceded (to the left) by a value lower by delta.
|
||||
|
||||
Eli Billauer, 3.4.05 (Explicitly not copyrighted).
|
||||
This function is released to the public domain; Any use is allowed.
|
||||
|
||||
Args:
|
||||
v (float): 1D array
|
||||
delta (float): threshold for determining peaks/troughs
|
||||
|
||||
Returns:
|
||||
maxtab, mintab (list): Indices of peak/trough locations
|
||||
"""
|
||||
|
||||
maxtab = []
|
||||
mintab = []
|
||||
|
||||
if x is None:
|
||||
x = np.arange(len(v))
|
||||
|
||||
v = np.asarray(v)
|
||||
|
||||
if len(v) != len(x):
|
||||
sys.exit('Input vectors v and x must have same length')
|
||||
|
||||
if not np.isscalar(delta):
|
||||
sys.exit('Input argument delta must be a scalar')
|
||||
|
||||
if delta <= 0:
|
||||
sys.exit('Input argument delta must be positive')
|
||||
|
||||
mn, mx = np.Inf, -np.Inf
|
||||
mnpos, mxpos = np.NaN, np.NaN
|
||||
|
||||
lookformax = True
|
||||
|
||||
for i in np.arange(len(v)):
|
||||
this = v[i]
|
||||
if this > mx:
|
||||
mx = this
|
||||
mxpos = x[i]
|
||||
if this < mn:
|
||||
mn = this
|
||||
mnpos = x[i]
|
||||
|
||||
if lookformax:
|
||||
if this < mx-delta:
|
||||
if int(mxpos) != 0:
|
||||
maxtab.append(int(mxpos))
|
||||
mn = this
|
||||
mnpos = x[i]
|
||||
lookformax = False
|
||||
else:
|
||||
if this > mn+delta:
|
||||
if int(mnpos) != 0:
|
||||
mintab.append(int(mnpos))
|
||||
mx = this
|
||||
mxpos = x[i]
|
||||
lookformax = True
|
||||
|
||||
return maxtab, mintab
|
||||
|
||||
|
||||
|
||||
|
在新工单中引用
屏蔽一个用户