hdf5 xdmf support

这个提交包含在:
jasminium
2016-05-10 16:12:40 +01:00
父节点 1f5947c315
当前提交 b92ce556f6
共有 4 个文件被更改,包括 469 次插入79 次删除

查看文件

@@ -19,6 +19,7 @@
import sys
import numpy as np
from struct import pack
from gprMax.xdmf import write_output_file
from gprMax.utilities import round_value
@@ -55,6 +56,10 @@ class GeometryView:
self.filename = filename
self.type = type
def write_xdmf(self, modelrun, numbermodelruns, G):
filename = self.filename[:-4]
write_output_file(filename, G)
def write_vtk(self, modelrun, numbermodelruns, G):
"""Writes the geometry information to a VTK file. Either ImageData (.vti) for a per-cell geometry view, or PolygonalData (.vtp) for a per-cell-edge geometry view.

查看文件

@@ -348,6 +348,7 @@ def run_model(args, modelrun, numbermodelruns, inputfile, usernamespace):
tgeostart = perf_counter()
for geometryview in G.geometryviews:
geometryview.write_vtk(modelrun, numbermodelruns, G)
geometryview.write_xdmf(modelrun, numbermodelruns, G)
tgeoend = perf_counter()
print('\nGeometry file(s) written in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tgeoend - tgeostart))))

查看文件

@@ -22,8 +22,31 @@ import matplotlib.pyplot as plt
from gprMax.constants import c, floattype, complextype
from gprMax.materials import Material
class Grid():
class FDTDGrid:
def __init__(self, grid):
self.nx = grid.shape[0]
self.ny = grid.shape[1]
self.nz = grid.shape[2]
self.grid = grid
def n_edges(self):
l = self.nx
m = self.ny
n = self.nz
e = (l * m * (n - 1)) + (m * n * (l - 1)) + (l * n * (m - 1))
return e
def n_nodes(self):
return self.nx * self.ny * self.nz
def n_cells(self):
return (self.nx - 1) * (self.ny - 1) * (self.nz - 1)
def get(self, i, j, k):
return self.grid[i, j, k]
class FDTDGrid(Grid):
"""Holds attributes associated with the entire grid. A convenient way for accessing regularly used parameters."""
def __init__(self):

361
gprMax/xdmf.py 普通文件
查看文件

@@ -0,0 +1,361 @@
import numpy as np
import h5py
from lxml import etree
from gprMax.grid import Grid
import copy
class Edges:
def __init__(self, grid):
"""
Class to define some connectivity of for an n x l x m
grid
"""
self.total_edges = grid.n_edges()
self.edges = np.zeros((self.total_edges, 2), np.float32)
self.edge_count = 0
self.grid = grid
"""
Adds the the edge specified by in_node and the i,j,k position of the outnode
"""
def add_edge(self, in_label, i, j, k):
out_label = self.grid.get(i, j, k)
self.edges[self.edge_count] = np.array([in_label, out_label])
self.edge_count += 1
class Coordinates:
def __init__(self, grid):
self.total_coordinates = grid.nx * grid.ny * grid.nz
self.coordinate_count = 0
self.coordinates = np.zeros((self.total_coordinates, 3), np.float32)
def add_coordinate(self, x, y, z):
self.coordinates[self.coordinate_count] = np.array([x, y, z])
self.coordinate_count += 1
def hexCellPicker(grid, i, j, k):
"""
This is the ordering of nodes in the hexahedron cell.
7 --------- 6
/ /|
4 --------- 5 2
| 3 | /
| / |/
0 --------- 1
0 1 2 3 4 5 6 7
"""
cell = [
grid[i][j][k],
# 1
grid[i + 1][j][k],
# 2
grid[i + 1][j + 1][k],
# 3
grid[i][j + 1][k],
# 4
grid[i][j][k + 1],
# 5
grid[i + 1][j][k + 1],
# 6
grid[i + 1][j + 1][k + 1],
# 7
grid[i][j + 1][k + 1]
]
return cell
class Solids:
def __init__(self, fdtd_grid):
self.count = 0
self.fdtd_grid = fdtd_grid
self.total_solids = fdtd_grid.n_cells()
self.solids = np.zeros((self.total_solids), np.float32)
def add_solid(self, i, j, k):
self.solids[self.count] = self.fdtd_grid.solid[i][j][k]
self.count += 1
class SolidLabels():
def __init__(self, label_grid):
self.count = 0
self.label_grid = label_grid
self.total_solids = label_grid.n_cells()
self.solid_labels = np.zeros((self.total_solids, 8), np.float32)
def add(self, i, j, k):
solid_labels = hexCellPicker(self.label_grid.grid, i, j, k)
self.solid_labels[self.count] = solid_labels
self.count += 1
class Materials:
def __init__(self, fdtd_grid):
self.fdtd_grid = fdtd_grid
self.n_edges = fdtd_grid.n_edges()
self.materials = np.zeros((self.n_edges), np.float32)
self.material_count = 0
# direction x->0 y->1 z->2
def add_material(self, i, j, k, direction):
material = self.fdtd_grid.ID[direction, i, j, k]
self.materials[self.material_count] = material
self.material_count += 1
def process_grid(fdtd_grid):
# Dimensions of the problem domain.
nx = fdtd_grid.nx
ny = fdtd_grid.ny
nz = fdtd_grid.nz
# label each node in the space
labels = np.arange(nx * ny * nz).reshape(nx, ny, nz)
label_grid = Grid(labels)
# Edges define the connectivity of the grid.
edges = Edges(label_grid)
# Material for each edge
edge_materials = Materials(fdtd_grid)
# Define coordinates for each node
coordinates = Coordinates(fdtd_grid)
# Material for each solid
solids = Solids(fdtd_grid)
# Connectivity for hexhahedron grid
solid_labels = SolidLabels(label_grid)
i_max = nx - 1
j_max = ny - 1
k_max = nz - 1
for i, ix in enumerate(labels):
for j, jx in enumerate(ix):
for k, kx in enumerate(jx):
label = labels[i][j][k]
# Each vertex can have varying numbers of edges
# Type 1 vertex
if i < i_max and j < j_max and k < k_max:
edges.add_edge(label, i + 1, j, k)
edges.add_edge(label, i, j + 1, k)
edges.add_edge(label, i, j, k + 1)
edge_materials.add_material(i, j, k, 0)
edge_materials.add_material(i, j, k, 1)
edge_materials.add_material(i, j, k, 2)
# Only this node can support a cell
solids.add_solid(i, j, k)
solid_labels.add(i, j, k)
# Type 2 vertex
elif i < i_max and j == j_max and k == k_max:
edges.add_edge(label, i + 1, j, k)
edge_materials.add_material(i, j, k, 0)
# Type 7 vertex
elif i < i_max and j == j_max and k < k_max:
edges.add_edge(label, i + 1, j, k)
edges.add_edge(label, i, j, k + 1)
edge_materials.add_material(i, j, k, 0)
edge_materials.add_material(i, j, k, 2)
# Type 6 vertex
elif i == i_max and j == j_max and k < k_max:
edges.add_edge(label, i, j, k + 1)
edge_materials.add_material(i, j, k, 2)
# Type 5 vertex
elif i == i_max and j < j_max and k < k_max:
edges.add_edge(label, i, j, k + 1)
edges.add_edge(label, i, j + 1, k)
edge_materials.add_material(i, j, k, 2)
edge_materials.add_material(i, j, k, 1)
# Type 4 vertex
elif i == i_max and j < j_max and k == k_max:
edges.add_edge(label, i, j + 1, k)
edge_materials.add_material(i, j, k, 1)
# Type 8 vertex
elif i < i_max and j < j_max and k == k_max:
edges.add_edge(label, i, j + 1, k)
edges.add_edge(label, i + 1, j, k)
edge_materials.add_material(i, j, k, 1)
edge_materials.add_material(i, j, k, 0)
# Type 3 vertex
# Has no new connectivity
elif i == i_max and j == j_max and k == k_max:
pass
else:
print('oh no')
# Add the coordinates
coordinates.add_coordinate(i, j, k)
#x = np.arange(fdtd_grid.nx)
#y = np.arange(fdtd_grid.ny)
#z = np.arange(fdtd_grid.nz)
return {
'coordinates': coordinates,
'solids': solids,
'solid_labels': solid_labels,
'edges': edges,
'edge_materials': edge_materials,
#'x': x,
#'y': y,
#'z': z
}
def write_output_file(filename, grid):
data = process_grid(grid)
data['filename'] = filename
data['xml_doc'] = create_xdmf_markup(data)
write_H5file(data)
write_xml_doc(data)
def write_xml_doc(options):
#write xml to file
with open(options['filename'] + '.xdmf', 'wb') as xdmf_f:
xdmf_f.write(options['xml_doc'])
def write_H5file(options):
f = h5py.File(options['filename'] + '.h5', "w")
coords = f.create_group("mesh")
coords.create_dataset('coordinates', data=options['coordinates'].coordinates)
coords.create_dataset('connectivity', data=options['edges'].edges)
coords.create_dataset('solid_connectivity', data=options['solid_labels'].solid_labels)
#coords.create_dataset('x', data=options['x'])
#coords.create_dataset('y', data=options['y'])
#coords.create_dataset('z', data=options['z'])
data = f.create_group("data")
data.create_dataset('materials', data=options['edge_materials'].materials)
data.create_dataset('solids', data=options['solids'].solids)
def create_xdmf_markup(options):
# Write the XDMF markup for edge style grid
xdmf_el = etree.Element("Xdmf", Version="2.0")
domain_el = etree.Element("Domain")
xdmf_el.append(domain_el)
grid_el = etree.Element("Grid", Name="Edges", GridType="Uniform")
domain_el.append(grid_el)
# Create the grid node
topology_el = etree.Element("Topology", TopologyType="Polyline", NumberOfElements=str(options['edges'].total_edges))
grid_el.append(topology_el)
topology_dimensions = "{} 2".format(options['edges'].total_edges)
top_data_el = etree.Element("DataItem", Dimensions=topology_dimensions, NumberType="Float", Precision="8", Format="HDF")
top_data_el.text = "{}:/mesh/connectivity".format(options['filename'] + '.h5')
topology_el.append(top_data_el)
# Create the Geometry node
geometry_el = etree.Element("Geometry", GeometryType="XYZ")
grid_el.append(geometry_el)
# Create the origin coordinates
coordinates_dimensions = "{} 3".format(options['coordinates'].total_coordinates)
origin_el = etree.Element("DataItem", Dimensions=coordinates_dimensions, NumberType="Float", Precision="8", Format="HDF")
origin_el.text = "{}:/mesh/coordinates".format(options['filename'] + '.h5')
geometry_el.append(origin_el)
# Create the materials attribute
attr_el = etree.Element("Attribute", Center="Cell", Name="Edge_Materials")
grid_el.append(attr_el)
materials_dimensions = "{} 1".format(options['edge_materials'].material_count)
materials_el = etree.Element("DataItem", Dimensions=materials_dimensions, NumberType="Float", Precision="8", Format="HDF")
materials_el.text = "{}:/data/materials".format(options['filename'] + '.h5')
attr_el.append(materials_el)
"""
# VOXEL style markup
v_grid_el = etree.Element("Grid", Name="Voxel", GridType="Uniform")
domain_el.append(v_grid_el)
noe = "{} {} {}".format(options['x'].size, options['y'].size, options['y'].size)
v_topology_el = etree.Element("Topology", TopologyType="3DRectMesh", NumberOfElements=noe)
v_grid_el.append(v_topology_el)
v_geometry = etree.Element("Geometry", GeometryType="VXVYVZ")
v_grid_el.append(v_geometry)
d1 = etree.Element("DataItem", Dimensions=str(options['x'].size), NumberType="Float", Precision="4", Format="HDF")
d1.text = "{}:/mesh/x".format(options['filename'] + '.h5')
v_geometry.append(d1)
d2 = etree.Element("DataItem", Dimensions=str(options['y'].size), NumberType="Float", Precision="4", Format="HDF")
d2.text = "{}:/mesh/y".format(options['filename'] + '.h5')
v_geometry.append(d2)
d3 = etree.Element("DataItem", Dimensions=str(options['z'].size), NumberType="Float", Precision="4", Format="HDF")
d3.text = "{}:/mesh/z".format(options['filename'] + '.h5')
v_geometry.append(d3)
v_attr = etree.Element("Attribute", Name="material-blocks", Center="Cell")
v_grid_el.append(v_attr)
d4 = etree.Element("DataItem", Format="HDF", NumberType="Float", Precision="4", Dimensions=str(options['solids'].solids.size))
d4.text = "{}:/data/solids".format(options['filename'] + '.h5')
v_attr.append(d4)
"""
v_grid_el = etree.Element("Grid", Name="Voxel", GridType="Uniform")
domain_el.append(v_grid_el)
n_solids = str(options['solids'].solids.size)
v_topology_el = etree.Element("Topology", TopologyType="Hexahedron", NumberOfElements=str(options['solids'].solids.size))
v_grid_el.append(v_topology_el)
solid_label_d = "{} {}".format(n_solids, 8)
solid_labels_el = etree.Element("DataItem", Dimensions=solid_label_d, Format="HDF")
solid_labels_el.text = "{}:/mesh/solid_connectivity".format(options['filename'] + '.h5')
v_topology_el.append(solid_labels_el)
# Same geometry as edges
v_grid_el.append(copy.deepcopy(geometry_el))
v_attr = etree.Element("Attribute", Name="Voxel_Materials", Center="Cell")
v_grid_el.append(v_attr)
d4 = etree.Element("DataItem", Format="HDF", NumberType="Float", Precision="4", Dimensions=str(options['solids'].solids.size))
d4.text = "{}:/data/solids".format(options['filename'] + '.h5')
v_attr.append(d4)
# Define a doctype - useful for parsers
doc_type = '<!DOCTYPE Xdmf SYSTEM "Xdmf.dtd" []>'
# Serialize elements
xml_doc = etree.tostring(xdmf_el, xml_declaration=True,
encoding="utf-8", doctype=doc_type, pretty_print=True)
return xml_doc