你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-08 07:24:19 +08:00
Add subgrid and antenna reframe tests
这个提交包含在:
@@ -212,5 +212,9 @@ class GprMaxRegressionTest(GprMaxBaseTest):
|
||||
)
|
||||
|
||||
|
||||
class GprMaxAPIRegressionTest(GprMaxRegressionTest):
|
||||
executable = "time -p python"
|
||||
|
||||
|
||||
class GprMaxMpiTest(GprMaxBaseTest):
|
||||
pass
|
||||
|
@@ -1,5 +1,5 @@
|
||||
import reframe as rfm
|
||||
from base_tests import GprMaxRegressionTest
|
||||
from base_tests import GprMaxAPIRegressionTest, GprMaxRegressionTest
|
||||
from reframe.core.builtins import parameter, run_after
|
||||
|
||||
"""ReFrame tests for basic functionality
|
||||
@@ -82,3 +82,71 @@ class BasicModelsTest(GprMaxRegressionTest):
|
||||
self.executable_opts = [self.input_file, "-o", self.output_file]
|
||||
self.postrun_cmds = [f"python -m toolboxes.Plotting.plot_Ascan -save {self.output_file}"]
|
||||
self.keep_files = [self.input_file, self.output_file, f"{self.model}.pdf"]
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class AntennaModelsTest(GprMaxRegressionTest):
|
||||
tags = {"test", "serial", "regression", "antenna"}
|
||||
|
||||
# List of available antenna test models
|
||||
model = parameter(
|
||||
[
|
||||
"antenna_wire_dipole_fs",
|
||||
]
|
||||
)
|
||||
num_cpus_per_task = 16
|
||||
|
||||
@run_after("init")
|
||||
def set_filenames(self):
|
||||
self.input_file = f"{self.model}.in"
|
||||
self.output_file = f"{self.model}.h5"
|
||||
self.executable_opts = [self.input_file, "-o", self.output_file]
|
||||
self.postrun_cmds = [f"python -m toolboxes.Plotting.plot_Ascan -save {self.output_file}"]
|
||||
self.postrun_cmds = [
|
||||
f"python -m toolboxes.Plotting.plot_antenna_params -save {self.output_file}"
|
||||
]
|
||||
|
||||
antenna_t1_params = f"{self.model}_t1_params.pdf"
|
||||
antenna_ant_params = f"{self.model}_ant_params.pdf"
|
||||
plot_ascan_output = f"{self.model}.pdf"
|
||||
geometry_view = f"{self.model}.vtu"
|
||||
self.keep_files = [
|
||||
self.input_file,
|
||||
self.output_file,
|
||||
antenna_t1_params,
|
||||
antenna_ant_params,
|
||||
plot_ascan_output,
|
||||
geometry_view,
|
||||
]
|
||||
|
||||
|
||||
@rfm.simple_test
|
||||
class SubgridTest(GprMaxAPIRegressionTest):
|
||||
tags = {"test", "api", "serial", "regression", "subgrid"}
|
||||
|
||||
# List of available subgrid test models
|
||||
model = parameter(
|
||||
[
|
||||
"cylinder_fs",
|
||||
# "gssi_400_over_fractal_subsurface", # Takes ~1hr 30m on ARCHER2
|
||||
]
|
||||
)
|
||||
num_cpus_per_task = 16
|
||||
|
||||
@run_after("init")
|
||||
def set_filenames(self):
|
||||
self.input_file = f"{self.model}.py"
|
||||
self.output_file = f"{self.model}.h5"
|
||||
self.executable_opts = [self.input_file, "-o", self.output_file]
|
||||
self.postrun_cmds = [f"python -m toolboxes.Plotting.plot_Ascan -save {self.output_file}"]
|
||||
|
||||
geometry_view = f"{self.model}.vti"
|
||||
subgrid_geometry_view = f"{self.model}_sg.vti"
|
||||
plot_ascan_output = f"{self.model}.pdf"
|
||||
self.keep_files = [
|
||||
self.input_file,
|
||||
self.output_file,
|
||||
geometry_view,
|
||||
subgrid_geometry_view,
|
||||
plot_ascan_output,
|
||||
]
|
||||
|
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
@@ -0,0 +1,15 @@
|
||||
#title: Wire antenna - half-wavelength dipole in free-space
|
||||
#domain: 0.050 0.050 0.200
|
||||
#dx_dy_dz: 0.001 0.001 0.001
|
||||
#time_window: 60e-9
|
||||
|
||||
#waveform: gaussian 1 1e9 mypulse
|
||||
#transmission_line: z 0.025 0.025 0.100 73 mypulse
|
||||
|
||||
## 150mm length
|
||||
#edge: 0.025 0.025 0.025 0.025 0.025 0.175 pec
|
||||
|
||||
## 1mm gap at centre of dipole
|
||||
#edge: 0.025 0.025 0.100 0.025 0.025 0.101 free_space
|
||||
|
||||
#geometry_view: 0.020 0.020 0.020 0.030 0.030 0.180 0.001 0.001 0.001 antenna_wire_dipole_fs f
|
115
reframe_tests/src/cylinder_fs.py
普通文件
115
reframe_tests/src/cylinder_fs.py
普通文件
@@ -0,0 +1,115 @@
|
||||
"""Cylinder in freespace
|
||||
|
||||
This example model demonstrates how to use subgrids at a basic level.
|
||||
|
||||
The geometry is 3D (required for any use of subgrids) and is of a water-filled
|
||||
cylindrical object in freespace. The subgrid encloses the cylinderical object
|
||||
using a fine spatial discretisation (1mm), and a courser spatial discretisation
|
||||
(5mm) is used in the rest of the model (main grid). A simple Hertzian dipole
|
||||
source is used with a waveform shaped as the first derivative of a gaussian.
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import gprMax
|
||||
from gprMax.materials import calculate_water_properties
|
||||
|
||||
# File path - used later to specify name of output files
|
||||
fn = Path(__file__)
|
||||
parts = fn.parts
|
||||
|
||||
# Subgrid spatial discretisation in x, y, z directions
|
||||
dl_sg = 1e-3
|
||||
|
||||
# Subgrid ratio - must always be an odd integer multiple
|
||||
ratio = 5
|
||||
dl = dl_sg * ratio
|
||||
|
||||
# Domain extent
|
||||
x = 0.500
|
||||
y = 0.500
|
||||
z = 0.500
|
||||
|
||||
# Time window
|
||||
tw = 6e-9
|
||||
|
||||
scene = gprMax.Scene()
|
||||
|
||||
title = gprMax.Title(name=fn.name)
|
||||
dxdydz = gprMax.Discretisation(p1=(dl, dl, dl))
|
||||
domain = gprMax.Domain(p1=(x, y, z))
|
||||
time_window = gprMax.TimeWindow(time=tw)
|
||||
|
||||
wf = gprMax.Waveform(wave_type="gaussiandot", amp=1, freq=1.5e9, id="mypulse")
|
||||
hd = gprMax.HertzianDipole(polarisation="z", p1=(0.205, 0.400, 0.250), waveform_id="mypulse")
|
||||
rx = gprMax.Rx(p1=(0.245, 0.400, 0.250))
|
||||
|
||||
scene.add(title)
|
||||
scene.add(dxdydz)
|
||||
scene.add(domain)
|
||||
scene.add(time_window)
|
||||
scene.add(wf)
|
||||
scene.add(hd)
|
||||
scene.add(rx)
|
||||
|
||||
# Cylinder parameters
|
||||
c1 = (0.225, 0.250, 0.100)
|
||||
c2 = (0.225, 0.250, 0.400)
|
||||
r = 0.010
|
||||
sg1 = (c1[0] - r, c1[1] - r, c1[2])
|
||||
sg2 = (c2[0] + r, c2[1] + r, c2[2])
|
||||
|
||||
# Create subgrid
|
||||
subgrid = gprMax.SubGridHSG(p1=sg1, p2=sg2, ratio=ratio, id="sg")
|
||||
scene.add(subgrid)
|
||||
|
||||
# Create water material
|
||||
eri, er, tau, sig = calculate_water_properties()
|
||||
water = gprMax.Material(er=eri, se=sig, mr=1, sm=0, id="water")
|
||||
subgrid.add(water)
|
||||
water = gprMax.AddDebyeDispersion(poles=1, er_delta=[er - eri], tau=[tau], material_ids=["water"])
|
||||
subgrid.add(water)
|
||||
|
||||
# Add cylinder to subgrid
|
||||
cylinder = gprMax.Cylinder(p1=c1, p2=c2, r=r, material_id="water")
|
||||
subgrid.add(cylinder)
|
||||
|
||||
# Create some geometry views for both subgrid and main grid
|
||||
gvsg = gprMax.GeometryView(
|
||||
p1=sg1,
|
||||
p2=sg2,
|
||||
dl=(dl_sg, dl_sg, dl_sg),
|
||||
filename=fn.with_suffix("").parts[-1] + "_sg",
|
||||
output_type="n",
|
||||
)
|
||||
subgrid.add(gvsg)
|
||||
|
||||
gv1 = gprMax.GeometryView(
|
||||
p1=(0, 0, 0),
|
||||
p2=(x, y, z),
|
||||
dl=(dl, dl, dl),
|
||||
filename=fn.with_suffix("").parts[-1],
|
||||
output_type="n",
|
||||
)
|
||||
scene.add(gv1)
|
||||
|
||||
# Create some snapshots of entire domain
|
||||
for i in range(5):
|
||||
s = gprMax.Snapshot(
|
||||
p1=(0, 0, 0),
|
||||
p2=(x, y, z),
|
||||
dl=(dl, dl, dl),
|
||||
time=(i + 0.5) * 1e-9,
|
||||
filename=fn.with_suffix("").parts[-1] + "_" + str(i + 1),
|
||||
)
|
||||
scene.add(s)
|
||||
|
||||
gprMax.run(
|
||||
scenes=[scene],
|
||||
n=1,
|
||||
geometry_only=False,
|
||||
outputfile=fn,
|
||||
subgrid=True,
|
||||
autotranslate=True,
|
||||
log_level=25,
|
||||
)
|
@@ -0,0 +1,166 @@
|
||||
"""GPR antenna model (like a GSSI 400MHz antenna) over layered media with a
|
||||
rough subsurface interface.
|
||||
|
||||
This example model demonstrates how to use subgrids at a more advanced level -
|
||||
combining use of an imported antenna model and rough subsurface interface.
|
||||
|
||||
The geometry is 3D (required for any use of subgrids) and is of a 2 layered
|
||||
subsurface. The top layer in a sandy soil and the bottom layer a soil with
|
||||
higher permittivity (both have some simple conductive loss). There is a rough
|
||||
interface between the soil layers. A GPR antenna model (like a GSSI 400MHz
|
||||
antenna) is imported and placed on the surface of the layered media. The antenna
|
||||
is meshed using a subgrid with a fine spatial discretisation (1mm), and a
|
||||
courser spatial discretisation (9mm) is used in the rest of the model (main
|
||||
grid).
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
|
||||
import gprMax
|
||||
from toolboxes.GPRAntennaModels.GSSI import antenna_like_GSSI_400
|
||||
|
||||
# File path - used later to specify name of output files
|
||||
fn = Path(__file__)
|
||||
parts = fn.parts
|
||||
|
||||
# Subgrid spatial discretisation in x, y, z directions
|
||||
dl_sg = 1e-3
|
||||
|
||||
# Subgrid ratio - must always be an odd integer multiple
|
||||
ratio = 9
|
||||
dl = dl_sg * ratio
|
||||
|
||||
# Domain extent
|
||||
x = 3
|
||||
y = 1
|
||||
z = 2
|
||||
|
||||
# Time window
|
||||
# Estimated two way travel time over 1 metre in material with highest
|
||||
# permittivity, slowest velocity.
|
||||
tw = 2 / 3e8 * (np.sqrt(3.2) + np.sqrt(9))
|
||||
|
||||
scene = gprMax.Scene()
|
||||
|
||||
title = gprMax.Title(name=fn.name)
|
||||
dxdydz = gprMax.Discretisation(p1=(dl, dl, dl))
|
||||
domain = gprMax.Domain(p1=(x, y, z))
|
||||
time_window = gprMax.TimeWindow(time=tw)
|
||||
|
||||
scene.add(title)
|
||||
scene.add(dxdydz)
|
||||
scene.add(domain)
|
||||
scene.add(time_window)
|
||||
|
||||
# Dimensions of antenna case
|
||||
antenna_case = (0.3, 0.3, 0.178)
|
||||
|
||||
# Position of antenna
|
||||
antenna_p = (x / 2, y / 2, 170 * dl)
|
||||
|
||||
# Extra distance surrounding antenna for subgrid
|
||||
bounding_box = 2 * dl
|
||||
|
||||
# Subgrid extent
|
||||
sg_x0 = antenna_p[0] - antenna_case[0] / 2 - bounding_box
|
||||
sg_y0 = antenna_p[1] - antenna_case[1] / 2 - bounding_box
|
||||
sg_z0 = antenna_p[2] - bounding_box
|
||||
sg_x1 = antenna_p[0] + antenna_case[0] / 2 + bounding_box
|
||||
sg_y1 = antenna_p[1] + antenna_case[1] / 2 + bounding_box
|
||||
sg_z1 = antenna_p[2] + antenna_case[2] + bounding_box
|
||||
|
||||
# Create subgrid
|
||||
sg = gprMax.SubGridHSG(p1=[sg_x0, sg_y0, sg_z0], p2=[sg_x1, sg_y1, sg_z1], ratio=ratio, id="sg")
|
||||
scene.add(sg)
|
||||
|
||||
# Create and add a box of homogeneous material to main grid - sandy_soil
|
||||
sandy_soil = gprMax.Material(er=3.2, se=0.397e-3, mr=1, sm=0, id="sandy_soil")
|
||||
scene.add(sandy_soil)
|
||||
b1 = gprMax.Box(p1=(0, 0, 0), p2=(x, y, antenna_p[2]), material_id="sandy_soil")
|
||||
scene.add(b1)
|
||||
|
||||
# Position box of sandy_soil in the subgrid.
|
||||
# It has to be positioned manually because it traverses the main grid/subgrid
|
||||
# interface. Grid traversal is when objects extend beyond the outer surface.
|
||||
# Setting autotranslate to false allows you to place objects beyond the outer
|
||||
# surface.
|
||||
|
||||
# PML separation from the outer surface
|
||||
ps = ratio // 2 + 2
|
||||
# Number of PML cells in the subgrid
|
||||
pc = 6
|
||||
# Inner surface/outer surface separation
|
||||
isos = 3 * ratio
|
||||
|
||||
# Calculate maximum z-coordinate (height) for box of sandy_soil in subgrid
|
||||
h = antenna_p[2] - sg_z0 + (ps + pc + isos) * dl_sg
|
||||
|
||||
# Create and add a box of homogeneous material to subgrid - sandy_soil
|
||||
sg.add(sandy_soil)
|
||||
b2 = gprMax.Box(p1=(0, 0, 0), p2=(411 * dl_sg, 411 * dl_sg, h), material_id="sandy_soil")
|
||||
# Set autotranslate for the box object to false
|
||||
b2.autotranslate = False
|
||||
sg.add(b2)
|
||||
|
||||
# Import antenna model and add components to subgrid
|
||||
gssi_objects = antenna_like_GSSI_400(*antenna_p, resolution=dl_sg)
|
||||
for obj in gssi_objects:
|
||||
sg.add(obj)
|
||||
|
||||
# Create and add a homogeneous material with a rough surface
|
||||
soil = gprMax.Material(er=9, se=0.397e-3, mr=1, sm=0, id="soil")
|
||||
scene.add(soil)
|
||||
|
||||
fb = gprMax.FractalBox(
|
||||
p1=(0, 0, 0),
|
||||
p2=(3, 1, 1),
|
||||
frac_dim=1.5,
|
||||
weighting=(1, 1, 1),
|
||||
n_materials=1,
|
||||
mixing_model_id="soil",
|
||||
id="fbox",
|
||||
seed=1,
|
||||
)
|
||||
scene.add(fb)
|
||||
|
||||
rough_surf = gprMax.AddSurfaceRoughness(
|
||||
p1=(0, 0, 1),
|
||||
p2=(3, 1, 1),
|
||||
frac_dim=1.5,
|
||||
weighting=(1, 1),
|
||||
limits=(0.4, 1.2),
|
||||
fractal_box_id="fbox",
|
||||
seed=1,
|
||||
)
|
||||
scene.add(rough_surf)
|
||||
|
||||
# Create some snapshots and geometry views
|
||||
for i in range(1, 51):
|
||||
snap = gprMax.Snapshot(
|
||||
p1=(0, y / 2, 0),
|
||||
p2=(x, y / 2 + dl, z),
|
||||
dl=(dl, dl, dl),
|
||||
filename=Path(*parts[:-1], f"{parts[-1]}_{str(i)}").name,
|
||||
time=i * tw / 50,
|
||||
)
|
||||
scene.add(snap)
|
||||
|
||||
gvsg = gprMax.GeometryView(
|
||||
p1=(sg_x0, sg_y0, sg_z0),
|
||||
p2=(sg_x1, sg_y1, sg_z1),
|
||||
dl=(dl_sg, dl_sg, dl_sg),
|
||||
filename=fn.with_suffix("").parts[-1] + "_sg",
|
||||
output_type="n",
|
||||
)
|
||||
sg.add(gvsg)
|
||||
|
||||
gv1 = gprMax.GeometryView(
|
||||
p1=(0, 0, 0), p2=domain.props.p1, dl=dl, filename=fn.with_suffix("").parts[-1], output_type="n"
|
||||
)
|
||||
scene.add(gv1)
|
||||
|
||||
gprMax.run(
|
||||
scenes=[scene], n=1, geometry_only=False, outputfile=fn, subgrid=True, autotranslate=True
|
||||
)
|
@@ -28,7 +28,9 @@ import numpy as np
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def calculate_antenna_params(filename, tltxnumber=1, tlrxnumber=None, rxnumber=None, rxcomponent=None):
|
||||
def calculate_antenna_params(
|
||||
filename, tltxnumber=1, tlrxnumber=None, rxnumber=None, rxcomponent=None
|
||||
):
|
||||
"""Calculates antenna parameters - incident, reflected and total volatges
|
||||
and currents; s11, (s21) and input impedance.
|
||||
|
||||
@@ -224,7 +226,10 @@ def mpl_plot(
|
||||
|
||||
# Print some useful values from s11, and input impedance
|
||||
s11minfreq = np.where(s11[pltrange] == np.amin(s11[pltrange]))[0][0]
|
||||
logger.info(f"s11 minimum: {np.amin(s11[pltrange]):g} dB at " + f"{freqs[s11minfreq + pltrangemin]:g} Hz")
|
||||
logger.info(
|
||||
f"s11 minimum: {np.amin(s11[pltrange]):g} dB at "
|
||||
+ f"{freqs[s11minfreq + pltrangemin]:g} Hz"
|
||||
)
|
||||
logger.info(f"At {freqs[s11minfreq + pltrangemin]:g} Hz...")
|
||||
logger.info(
|
||||
f"Input impedance: {np.abs(zin[s11minfreq + pltrangemin]):.1f}"
|
||||
@@ -236,7 +241,10 @@ def mpl_plot(
|
||||
# Figure 1
|
||||
# Plot incident voltage
|
||||
fig1, ax = plt.subplots(
|
||||
num="Transmitter transmission line parameters", figsize=(20, 12), facecolor="w", edgecolor="w"
|
||||
num="Transmitter transmission line parameters",
|
||||
figsize=(20, 12),
|
||||
facecolor="w",
|
||||
edgecolor="w",
|
||||
)
|
||||
gs1 = gridspec.GridSpec(4, 2, hspace=0.7)
|
||||
ax = plt.subplot(gs1[0, 0])
|
||||
@@ -368,7 +376,9 @@ def mpl_plot(
|
||||
|
||||
# Figure 2
|
||||
# Plot frequency spectra of s11
|
||||
fig2, ax = plt.subplots(num="Antenna parameters", figsize=(20, 12), facecolor="w", edgecolor="w")
|
||||
fig2, ax = plt.subplots(
|
||||
num="Antenna parameters", figsize=(20, 12), facecolor="w", edgecolor="w"
|
||||
)
|
||||
gs2 = gridspec.GridSpec(2, 2, hspace=0.3)
|
||||
ax = plt.subplot(gs2[0, 0])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s11[pltrange], "-.")
|
||||
@@ -458,13 +468,26 @@ def mpl_plot(
|
||||
# ax.grid(which='both', axis='both', linestyle='-.')
|
||||
|
||||
if save:
|
||||
savename1 = filename.stem + "_tl_params"
|
||||
savename1 = filename.parent / savename1
|
||||
savename2 = filename.stem + "_ant_params"
|
||||
savename2 = filename.parent / savename2
|
||||
filepath = Path(filename)
|
||||
savename1 = filepath.stem + "_tl_params"
|
||||
savename1 = filepath.parent / savename1
|
||||
savename2 = filepath.stem + "_ant_params"
|
||||
savename2 = filepath.parent / savename2
|
||||
# Save a PDF of the figure
|
||||
fig1.savefig(savename1.with_suffix(".pdf"), dpi=None, format="pdf", bbox_inches="tight", pad_inches=0.1)
|
||||
fig2.savefig(savename2.with_suffix(".pdf"), dpi=None, format="pdf", bbox_inches="tight", pad_inches=0.1)
|
||||
fig1.savefig(
|
||||
savename1.with_suffix(".pdf"),
|
||||
dpi=None,
|
||||
format="pdf",
|
||||
bbox_inches="tight",
|
||||
pad_inches=0.1,
|
||||
)
|
||||
fig2.savefig(
|
||||
savename2.with_suffix(".pdf"),
|
||||
dpi=None,
|
||||
format="pdf",
|
||||
bbox_inches="tight",
|
||||
pad_inches=0.1,
|
||||
)
|
||||
# Save a PNG of the figure
|
||||
# fig1.savefig(savename1.with_suffix('.png'), dpi=150, format='png',
|
||||
# bbox_inches='tight', pad_inches=0.1)
|
||||
@@ -485,7 +508,9 @@ if __name__ == "__main__":
|
||||
usage="cd gprMax; python -m toolboxes.Plotting.plot_antenna_params outputfile",
|
||||
)
|
||||
parser.add_argument("outputfile", help="name of output file including path")
|
||||
parser.add_argument("--tltx-num", default=1, type=int, help="transmitter antenna - transmission line number")
|
||||
parser.add_argument(
|
||||
"--tltx-num", default=1, type=int, help="transmitter antenna - transmission line number"
|
||||
)
|
||||
parser.add_argument("--tlrx-num", type=int, help="receiver antenna - transmission line number")
|
||||
parser.add_argument("--rx-num", type=int, help="receiver antenna - output number")
|
||||
parser.add_argument(
|
||||
@@ -495,7 +520,10 @@ if __name__ == "__main__":
|
||||
choices=["Ex", "Ey", "Ez"],
|
||||
)
|
||||
parser.add_argument(
|
||||
"-save", action="store_true", default=False, help="save plot directly to file, i.e. do not display"
|
||||
"-save",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="save plot directly to file, i.e. do not display",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
|
在新工单中引用
屏蔽一个用户