Added processing of #taguchi blocks. Cleaned up code and formatting.

这个提交包含在:
Craig Warren
2015-12-15 17:30:59 +00:00
父节点 fadbaba3a8
当前提交 8c20c41616

查看文件

@@ -22,7 +22,7 @@
__version__ = '3.0.0b12'
versionname = ' (Bowmore)'
import sys, os, datetime, itertools, argparse
import sys, os, datetime, itertools, argparse, importlib
if sys.platform != 'win32':
import resource
from time import perf_counter
@@ -66,6 +66,7 @@ def main():
numbermodelruns = args.n
inputdirectory = os.path.dirname(os.path.abspath(args.inputfile)) + os.sep
inputfile = inputdirectory + os.path.basename(args.inputfile)
inputfileparts = os.path.splitext(inputfile)
# Create a separate namespace that users can access in any Python code blocks in the input file
usernamespace = {'c': c, 'e0': e0, 'm0': m0, 'z0': z0, 'number_model_runs': numbermodelruns, 'inputdirectory': inputdirectory}
@@ -73,20 +74,23 @@ def main():
if args.opt_taguchi and numbermodelruns > 1:
raise CmdInputError('When a Taguchi optimisation is being carried out the number of model runs argument is not required')
#############################################
# Main routine for Taguchi optimisation #
#############################################
########################################
# Process for Taguchi optimisation #
########################################
if args.opt_taguchi:
from user_libs.optimisations.taguchi import select_OA, calculate_ranges_experiments, calculate_optimal_levels, fitness_max
from user_libs.optimisations.taguchi import taguchi_code_blocks, select_OA, calculate_ranges_experiments, calculate_optimal_levels
######## These should be read from #opt_taguchi block from input file
# Maximum number of iteration of optimisation to perform; used if the fitness metric is not achieved
maxiterations = 2
# Default maximum number of iterations of optimisation to perform (used if the stopping criterion is not achieved)
maxiterations = 10
# Dictionary containing name of parameters to optimise and their values
optparams = OrderedDict()
optparams['rickeramp'] = [0.25, 5]
# optparams['sig'] = [0.001, 0.1]
# Process Taguchi code blocks in the input file; pass in ordered dictionary to hold parameters to optimise
taguchinamespace = taguchi_code_blocks(inputfile, {'optparams': OrderedDict()})
# Extract dictionaries and variables containing initialisation parameters
optparams = taguchinamespace['optparams']
fitnessparams = taguchinamespace['fitnessparams']
if 'maxiterations' in taguchinamespace:
maxiterations = taguchinamespace['maxiterations']
# Store initial parameter ranges
optparamsinit = list(optparams.items())
@@ -94,28 +98,27 @@ def main():
# Dictionary to hold history of optmised values of parameters
optparamshist = OrderedDict((key, list()) for key in optparams)
# Dictionary containing name of fitness metric to use and names of associated outputs; should correspond to names of rxs in input file
fitnessmetric = {'max': ['myRx']}
########
# Import specified fitness function
fitness_metric = getattr(importlib.import_module('user_libs.optimisations.taguchi_fitness'), fitnessparams['name'])
# Select OA
OA, N, k, s = select_OA(optparams)
# Initialise arrays to store parameters required throughout optimisation
# Initialise arrays and lists to store parameters required throughout optimisation
# Lower, central, and upper values for each parameter
levels = np.zeros((s, k), dtype=floattype)
# Lower, central, and upper optimal values for each parameter from previous iteration
# Optimal lower, central, or upper value for each parameter
levelsopt = np.zeros(k, dtype=floattype)
# Difference used to set values in levels array
# Difference used to set values for levels
levelsdiff = np.zeros(k, dtype=floattype)
# Fitness values for each experiment
fitness = np.zeros(N, dtype=floattype)
fitnessvalues = []
# History of fitness values from each confirmation experiment
fitnesshist = np.zeros(maxiterations, dtype=floattype)
fitnessvalueshist = []
i = 0
while i < maxiterations:
# Set number of model runs to number of experiments for each iteration of optimisation
# Set number of model runs to number of experiments
numbermodelruns = N
usernamespace['number_model_runs'] = numbermodelruns
@@ -170,7 +173,7 @@ def main():
if tag == tags.START.value:
# Run a model
# Add specific value for each parameter to optimise, for each experiment to user accessible namespace
# Add specific value for each parameter to optimise for each experiment to user accessible namespace
optnamespace = usernamespace.copy()
optnamespace.update((key, value[modelrun - 1]) for key, value in optparams.items())
run_model(args, modelrun, numbermodelruns, inputfile, usernamespace)
@@ -191,18 +194,18 @@ def main():
tsimend = perf_counter()
print('\nTotal simulation time [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tsimend - tsimstart))))
# Calculate fitness metric for each experiment
# Calculate fitness value for each experiment
for exp in range(1, numbermodelruns + 1):
inputfileparts = os.path.splitext(inputfile)
outputfile = inputfileparts[0] + str(exp) + '.out'
fitness[exp - 1] = fitness_max(outputfile, ['myRx'])
fitnessvalues.append(fitness_metric(outputfile, fitnessparams['args']))
os.remove(outputfile)
print('\nTaguchi optimisation, iteration {}: completed initial {} experiments completed with fitness values {}.'.format(i + 1, numbermodelruns, fitness))
print('\nTaguchi optimisation, iteration {}: completed initial {} experiments completed with fitness values {}.'.format(i + 1, numbermodelruns, fitnessvalues))
# Calculate optimal levels from results of fitness metric by building a response table and update dictionary of parameters with optimal values
optparams, levelsopt = calculate_optimal_levels(optparams, levels, levelsopt, fitness, OA, N, k)
# Calculate optimal levels from fitness values by building a response table; update dictionary of parameters with optimal values
optparams, levelsopt = calculate_optimal_levels(optparams, levels, levelsopt, fitnessvalues, OA, N, k)
# Run a confirmation experiment
# Run a confirmation experiment with optimal values
numbermodelruns = 1
usernamespace['number_model_runs'] = numbermodelruns
tsimstart = perf_counter()
@@ -216,20 +219,26 @@ def main():
tsimend = perf_counter()
print('\nTotal simulation time [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tsimend - tsimstart))))
# Calculate fitness metric for confirmation experiment
inputfileparts = os.path.splitext(inputfile)
# Calculate fitness value for confirmation experiment
outputfile = inputfileparts[0] + '.out'
fitnesshist[i] = fitness_max(outputfile, ['myRx'])
fitnessvalueshist.append(fitness_metric(outputfile, fitnessparams['args']))
# Stop if fitness criteria have been met
# Rename confirmation experiment output file so that it is retained for each iteraction
os.rename(outputfile, os.path.splitext(outputfile)[0] + '_final' + str(i + 1) + '.out')
print('\nTaguchi optimisation, iteration {} completed with optimal values {} and fitness value {}\n{}\n'.format(i + 1, optparams, fitnesshist[i], 65*'*'))
print('\nTaguchi optimisation, iteration {} completed with optimal values {} and fitness value {}'.format(i + 1, dict(optparams), fitnessvalueshist[i], 68*'*'))
i += 1
############################################
# Main routine for standard simulation #
############################################
# Stop optimisation if stopping criterion has been reached
if fitnessvalueshist[i - 1] > fitnessparams['stop']:
break
print('\n{}\nTaguchi optimisation completed after {} iteration(s).\nConvergence history of optimal values {} and of fitness values {}\n{}\n'.format(68*'*', i, dict(optparamshist), fitnessvalueshist, 68*'*'))
#######################################
# Process for standard simulation #
#######################################
else:
if args.mpi and numbermodelruns == 1:
raise CmdInputError('MPI is not beneficial when there is only one model to run')
@@ -297,7 +306,7 @@ def main():
tsimend = perf_counter()
print('\nTotal simulation time [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tsimend - tsimstart))))
print('\nSimulation completed.\n{}\n'.format(65*'*'))
print('\nSimulation completed.\n{}\n'.format(68*'*'))
def run_model(args, modelrun, numbermodelruns, inputfile, usernamespace):
@@ -311,7 +320,7 @@ def run_model(args, modelrun, numbermodelruns, inputfile, usernamespace):
usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.
"""
print('Model input file: {}\n'.format(inputfile))
print('\n{}\n\nModel input file: {}\n'.format(68*'*', inputfile))
# Add the current model run to namespace that can be accessed by user in any Python code blocks in input file
usernamespace['current_model_run'] = modelrun